Flink1.18 如何配置算子级别的TTL

2024-03-22 21:36

本文主要是介绍Flink1.18 如何配置算子级别的TTL,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 解释

从 Flink 1.18 开始,Table API & SQL 支持配置细粒度的状态 TTL 来优化状态使用,可配置粒度为每个状态算子的入边数。具体而言,OneInputStreamOperator 可以配置一个状态的 TTL,而 TwoInputStreamOperator(例如双流 join)则可以分别为左状态和右状态配置 TTL。更一般地,对于具有 K 个输入的 MultipleInputStreamOperator,可以配置 K 个状态 TTL。

2. 使用场景

2.1 为 双流 Join 的左右流配置不同 TTL。

双流 Join 会生成拥有两条输入边TwoInputStreamOperator的状态算子,它用到了两个状态,分别来保存来自左流和右流的更新

2.2 在同一个作业中为不同的状态计算设置不同 TTL

举例来说,假设一个 ETL 作业使用 ROW_NUMBER 进行去重操作后, 紧接着使用 GROUP BY 语句进行聚合操作。 该作业会分别生成两个拥有单条输入边的 OneInputStreamOperator 状态算子。您可以为去重算子和聚合算子的状态分别设置不同的 TTL

​2.3 注意

由于基于窗口的操作(例如窗口连接、窗口聚合、窗口 Top-N 等)和 Interval Join 不依赖于 table.exec.state.ttl 来控制状态保留,因此它们的状态无法在算子级别进行配置

Interval Join 是一种流处理操作,它在两个数据流之间基于时间间隔进行连接这种连接是基于时间窗口的,而不是基于状态的保留时间。在 Interval Join 中,系统会根据两个数据流中元素的时间戳和定义的间隔来决定哪些元素应该被连接在一起

3.如何使用

3.1 生成 Compiled Plan

注意使用时的类型是insert,如果不是insert会报错 Unsupported SQL query! compilePlanSql() only accepts a single SQL statement of type INSERT

CompiledPlan compiledPlan = tableEnv.compilePlanSql("INSERT INTO enriched_orders \n" + "SELECT a.order_id, a.order_line_id, b.order_status, ... \n" + "FROM orders a JOIN line_orders b ON a.order_line_id = b.order_line_id");compiledPlan.writeToFile("/path/to/plan.json");在Flink Sql中使用COMPILE PLAN '/path/to/plan.json' FOR
INSERT INTO OrdersShipInfo
SELECT a.order_id, a.line_order_id, b.ship_mode 
FROM Orders a JOIN LineOrders b  ON a.line_order_id = b.line_order_id;

3.2 修改 Compiled Plan

每个状态算子会显式地生成一个名为 “state” 的 JSON 数组,具有如下结构。 理论上一个拥有 k 路输入的状态算子拥有 k 个状态"state": [{"index": 0,"ttl": "0 ms","name": "${1st input state name}"},{"index": 1,"ttl": "0 ms","name": "${2nd input state name}"},...]找到您需要修改的状态算子,将 TTL 的值设置为一个正整数,注意需要带上时间单位毫秒。举例来说,如果想将当前状态算子的 TTL 设置为 1 小时,您可以按照如下格式修改 JSON:{"index": 0,"ttl": "3600000 ms","name": "${1st input state name}"
}理论上,下游状态算子的 TTL 不应小于上游状态算子的 TTL。
保存好文件,然后使用 EXECUTE PLAN 语句来提交作业

3.3 执行Compiled Plan

tableEnv.loadPlan(PlanReference.fromFile("/path/to/plan.json")).execute().await();在Flink Sql中使用EXECUTE PLAN '/path/to/plan.json'

这篇关于Flink1.18 如何配置算子级别的TTL的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/836244

相关文章

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

Debian系和Redhat系防火墙配置方式

《Debian系和Redhat系防火墙配置方式》文章对比了Debian系UFW和Redhat系Firewalld防火墙的安装、启用禁用、端口管理、规则查看及注意事项,强调SSH端口需开放、规则持久化,... 目录Debian系UFW防火墙1. 安装2. 启用与禁用3. 基本命令4. 注意事项5. 示例配置R

PyCharm中配置PyQt的实现步骤

《PyCharm中配置PyQt的实现步骤》PyCharm是JetBrains推出的一款强大的PythonIDE,结合PyQt可以进行pythion高效开发桌面GUI应用程序,本文就来介绍一下PyCha... 目录1. 安装China编程PyQt1.PyQt 核心组件2. 基础 PyQt 应用程序结构3. 使用 Q

Redis MCP 安装与配置指南

《RedisMCP安装与配置指南》本文将详细介绍如何安装和配置RedisMCP,包括快速启动、源码安装、Docker安装、以及相关的配置参数和环境变量设置,感兴趣的朋友一起看看吧... 目录一、Redis MCP 简介二、安www.chinasem.cn装 Redis MCP 服务2.1 快速启动(推荐)2.

Spring Boot配置和使用两个数据源的实现步骤

《SpringBoot配置和使用两个数据源的实现步骤》本文详解SpringBoot配置双数据源方法,包含配置文件设置、Bean创建、事务管理器配置及@Qualifier注解使用,强调主数据源标记、代... 目录Spring Boot配置和使用两个数据源技术背景实现步骤1. 配置数据源信息2. 创建数据源Be

Spring Boot Maven 插件如何构建可执行 JAR 的核心配置

《SpringBootMaven插件如何构建可执行JAR的核心配置》SpringBoot核心Maven插件,用于生成可执行JAR/WAR,内置服务器简化部署,支持热部署、多环境配置及依赖管理... 目录前言一、插件的核心功能与目标1.1 插件的定位1.2 插件的 Goals(目标)1.3 插件定位1.4 核

RabbitMQ消息总线方式刷新配置服务全过程

《RabbitMQ消息总线方式刷新配置服务全过程》SpringCloudBus通过消息总线与MQ实现微服务配置统一刷新,结合GitWebhooks自动触发更新,避免手动重启,提升效率与可靠性,适用于配... 目录前言介绍环境准备代码示例测试验证总结前言介绍在微服务架构中,为了更方便的向微服务实例广播消息,

nginx 负载均衡配置及如何解决重复登录问题

《nginx负载均衡配置及如何解决重复登录问题》文章详解Nginx源码安装与Docker部署,介绍四层/七层代理区别及负载均衡策略,通过ip_hash解决重复登录问题,对nginx负载均衡配置及如何... 目录一:源码安装:1.配置编译参数2.编译3.编译安装 二,四层代理和七层代理区别1.二者混合使用举例

Java JDK1.8 安装和环境配置教程详解

《JavaJDK1.8安装和环境配置教程详解》文章简要介绍了JDK1.8的安装流程,包括官网下载对应系统版本、安装时选择非系统盘路径、配置JAVA_HOME、CLASSPATH和Path环境变量,... 目录1.下载JDK2.安装JDK3.配置环境变量4.检验JDK官网下载地址:Java Downloads

Linux下进程的CPU配置与线程绑定过程

《Linux下进程的CPU配置与线程绑定过程》本文介绍Linux系统中基于进程和线程的CPU配置方法,通过taskset命令和pthread库调整亲和力,将进程/线程绑定到特定CPU核心以优化资源分配... 目录1 基于进程的CPU配置1.1 对CPU亲和力的配置1.2 绑定进程到指定CPU核上运行2 基于