深入剖析Java并发库(JUC)之StampedLock的应用与原理

2024-03-22 16:12

本文主要是介绍深入剖析Java并发库(JUC)之StampedLock的应用与原理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

码到三十五 : 个人主页

心中有诗画,指尖舞代码,目光览世界,步履越千山,人间尽值得 !


在现代多核处理器架构下,并发编程成为提升程序性能的关键手段。Java作为一门广泛使用的编程语言,提供了丰富的并发编程工具和库,其中Java并发库(JUC)就是非常重要的一部分。在JUC中,除了我们熟知的ReentrantLock、ReentrantReadWriteLock等锁机制外,还有一个相对较新的锁机制——StampedLock。本文将深入解析StampedLock的工作原理、使用场景以及它相比其他锁机制的优势。

目录

    • 一、StampedLock简介
    • 二、StampedLock的工作机制
    • 三、StampedLock的原理
      • 3.1 StampedLock核心
      • 3.2 源码分析
    • 四、StampedLock的使用场景
    • 五、StampedLock的使用
    • 六、StampedLock与其他锁机制的比较
    • 总结

一、StampedLock简介

StampedLock是Java 8引入的一种新的锁机制,它提供了乐观读锁和悲观读写锁的能力。与传统的ReentrantLock和ReentrantReadWriteLock相比,StampedLock在并发性能上有了显著的提升。这是因为它支持一种称为“乐观读”的锁策略,该策略允许多个线程同时读取共享资源,而无需阻塞或等待其他线程的锁释放。

二、StampedLock的工作机制

StampedLock内部维护了一个状态变量,用于表示锁的状态。这个状态变量不仅包含了锁的类型(读锁或写锁),还包含了一个版本号(stamp)。当线程尝试获取锁时,StampedLock会根据锁的类型和当前状态来决定是否授予锁,并返回一个相应的stamp值。线程在释放锁时,需要传入之前获得的stamp值,以确保锁的正确释放。

StampedLock提供了两种类型的读锁:乐观读锁和悲观读锁。乐观读锁允许多个线程同时读取共享资源,而无需阻塞或等待。这种锁策略适用于读多写少的场景,可以显著提高并发性能。然而,如果有一个线程正在修改共享资源,那么乐观读锁可能会读取到不一致的数据。为了避免这种情况,StampedLock还提供了悲观读锁,它在读取共享资源时会阻塞其他写线程的访问。

StampedLock 是 Java 并发包 java.util.concurrent.locks 中的一个类,它提供了乐观读、悲观读和写锁的机制。由于 StampedLock 的实现相对复杂,这里我将简要概述其核心原理,并提供一些关键部分的源码分析。请注意,源码可能会随着 Java 版本的更新而有所变化,以下分析基于 Java 8 及之后的版本。

三、StampedLock的原理

3.1 StampedLock核心

  1. 锁状态:StampedLock 使用一个内部变量(通常是一个 long 类型的变量)来维护锁的状态。这个状态不仅表示锁是否被持有,还包含了一个版本号(stamp),用于支持乐观读锁。

  2. 乐观读锁:当线程尝试获取乐观读锁时,StampedLock 会检查当前是否有写锁被持有。如果没有,它会增加一个读锁计数器并返回一个 stamp(通常是当前状态的一个快照)。乐观读锁不会阻塞其他读线程或写线程,但可能在写线程获得锁后读取到不一致的数据。

  3. 悲观读锁:与乐观读锁不同,悲观读锁会阻塞其他写线程的访问。当线程尝试获取悲观读锁时,StampedLock 会检查是否有其他写线程持有锁或正在等待锁。如果没有,它会授予锁并返回一个 stamp。

  4. 写锁:写锁是独占的,意味着同一时间只能有一个线程持有写锁。当线程尝试获取写锁时,StampedLock 会检查是否有其他读锁或写锁被持有。如果有,线程将被阻塞直到锁被释放。

  5. 可重入性:StampedLock 支持锁的可重入性,即一个线程可以多次获得同一个锁而不会导致死锁。这是通过跟踪每个线程的锁持有计数来实现的。

  6. 锁转换:StampedLock 允许线程将乐观读锁转换为悲观读锁或写锁,或将悲观读锁转换为写锁,前提是在转换过程中没有其他线程获得相应的锁。

3.2 源码分析

由于 StampedLock 的源码较长且复杂,这里只展示和分析一些关键部分。

在这里插入图片描述

锁状态变量

StampedLock 使用一个名为 state 的 long 类型变量来存储锁的状态。这个状态包含了锁的类型(读锁、写锁)和版本号等信息。

private final long WRITER_MASK = 0x8000000000000000L; // 写锁标志位
private final long NOT_LOCKED = 0L; // 锁未被持有的状态
private volatile long state; // 锁状态变量

乐观读锁获取

当线程尝试获取乐观读锁时,会调用 tryOptimisticRead 方法:

public long tryOptimisticRead() {long s = state; // 获取当前锁状态// 检查是否有写锁被持有(通过检查最高位是否为1)if ((s & WRITER_MASK) != 0L) {// 有写锁被持有,返回0表示获取失败return 0L;} else {// 没有写锁被持有,返回当前状态作为stamp(乐观读锁不会改变锁状态)return s;}
}

写锁获取

当线程尝试获取写锁时,会调用类似 writeLocktryWriteLock 的方法,这些方法最终会调用一个内部方法来实现锁的获取逻辑。以下是一个简化的示例:

private boolean acquireWrite(boolean interruptible, long deadline) {// 省略部分代码...long s = state, next; // 当前状态和下一个状态// 循环尝试获取锁直到成功或超时或中断while (((s & WRITER_MASK) != 0L) || ((next = tryIncWriter(s)) == 0L)) {// 锁被其他线程持有,根据interruptible和deadline决定等待或返回失败// 省略等待和中断处理逻辑...}// 成功获取写锁,设置锁持有者信息(线程和重入计数)并返回true// 省略设置锁持有者信息和返回逻辑...
}

tryIncWriter 会尝试增加写锁计数器并返回新的状态。如果返回 0,表示获取锁失败(通常是因为锁已经被其他线程持有或状态已经改变)。注意这里的循环和等待逻辑是为了处理并发访问和锁竞争的情况。

四、StampedLock的使用场景

StampedLock适用于读多写少、数据一致性要求不高的场景。例如,在一个缓存系统中,多个线程可能同时读取同一个缓存项,而只有少数线程会修改缓存项。在这种情况下,使用StampedLock的乐观读锁可以显著提高并发性能。然而,如果数据一致性要求非常高,或者写操作非常频繁,那么可能需要考虑使用其他的锁机制,如ReentrantLock或ReentrantReadWriteLock。

五、StampedLock的使用

下面的代码展示了如何使用乐观读锁、悲观读锁和写锁。注意下,这只是一个基础示例,用于说明各种锁的使用方式。

import java.util.concurrent.locks.StampedLock;public class StampedLockExample {// 创建一个 StampedLock 实例private final StampedLock stampedLock = new StampedLock();// 共享资源private int balance = 0;// 使用乐观读锁读取余额public int getBalanceWithOptimisticReadLock() {// 尝试获取乐观读锁long stamp = stampedLock.tryOptimisticRead();// 读取余额int currentBalance = balance;// 检查乐观读锁在读取过程中是否被无效(比如被写锁干扰)if (!stampedLock.validate(stamp)) {// 如果无效,则使用悲观读锁重新读取stamp = stampedLock.readLock();try {currentBalance = balance;} finally {// 释放悲观读锁stampedLock.unlockRead(stamp);}}return currentBalance;}// 使用悲观读锁读取余额public int getBalanceWithPessimisticReadLock() {// 获取悲观读锁long stamp = stampedLock.readLock();try {// 读取余额return balance;} finally {// 释放悲观读锁stampedLock.unlockRead(stamp);}}// 使用写锁更新余额public void updateBalanceWithWriteLock(int amount) {// 获取写锁long writeStamp = stampedLock.writeLock();try {// 更新余额balance += amount;} finally {// 释放写锁stampedLock.unlockWrite(writeStamp);}}public static void main(String[] args) {StampedLockExample example = new StampedLockExample();// 模拟多线程环境下的读写操作Runnable readTask = () -> {int balance = example.getBalanceWithOptimisticReadLock();System.out.println("读取到的余额(乐观读锁): " + balance);};Runnable writeTask = () -> {example.updateBalanceWithWriteLock(100);System.out.println("更新了余额(写锁), 新余额: " + example.getBalanceWithPessimisticReadLock());};// 启动多个读线程和写线程来模拟并发访问// 注意:在实际应用中,应该控制线程的数量和执行顺序以避免过度竞争和潜在的死锁风险。// 这里为了简化示例,并没有使用线程池或同步工具来控制线程的启动和终止。new Thread(readTask).start();new Thread(readTask).start();new Thread(writeTask).start();// ... 可以继续启动更多线程进行测试}
}

在上面的代码中,我们有一个 balance 变量作为共享资源。我们定义了三个方法:

  1. getBalanceWithOptimisticReadLock:使用乐观读锁尝试读取余额。如果在读取过程中乐观读锁被写锁干扰而失效,它将回退到使用悲观读锁重新读取余额。

  2. getBalanceWithPessimisticReadLock:使用悲观读锁读取余额。这将阻止其他写线程在此期间修改余额,但允许多个读线程同时读取。

  3. updateBalanceWithWriteLock:使用写锁更新余额。这将独占访问共享资源,确保在更新期间没有其他线程能够读取或写入余额。

main 方法中,我们创建了一个 StampedLockExample 实例,并定义了读任务和写任务来模拟多线程环境下的读写操作。然后,我们启动多个线程来执行这些任务。

六、StampedLock与其他锁机制的比较

与传统的ReentrantLock和ReentrantReadWriteLock相比,StampedLock在并发性能上有了显著的提升。这是因为它采用了乐观读锁的策略,允许多个线程同时读取共享资源。
此外,StampedLock还支持可重入锁和公平锁的特性,提供了更灵活的锁控制选项。
然而,StampedLock的使用也相对复杂一些,需要开发者对锁的状态和版本号进行精细的控制和管理。

总结

StampedLock是Java并发库(JUC)中一种高效、灵活的锁机制。它提供了乐观读锁和悲观读写锁的能力,适用于读多写少、数据一致性要求不高的场景。与传统的ReentrantLock和ReentrantReadWriteLock相比,StampedLock在并发性能上有了显著的提升。然而,它的使用也相对复杂一些,需要开发者对锁的状态和版本号进行精细的控制和管理。在实际应用中,开发者应根据具体的场景和需求选择合适的锁机制来确保程序的正确性和性能。



术因分享而日新,每获新知,喜溢心扉。
诚邀关注公众号 码到三十五 ,获取更多技术资料。


这篇关于深入剖析Java并发库(JUC)之StampedLock的应用与原理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/835652

相关文章

springboot集成easypoi导出word换行处理过程

《springboot集成easypoi导出word换行处理过程》SpringBoot集成Easypoi导出Word时,换行符n失效显示为空格,解决方法包括生成段落或替换模板中n为回车,同时需确... 目录项目场景问题描述解决方案第一种:生成段落的方式第二种:替换模板的情况,换行符替换成回车总结项目场景s

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

SpringBoot中@Value注入静态变量方式

《SpringBoot中@Value注入静态变量方式》SpringBoot中静态变量无法直接用@Value注入,需通过setter方法,@Value(${})从属性文件获取值,@Value(#{})用... 目录项目场景解决方案注解说明1、@Value("${}")使用示例2、@Value("#{}"php

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

线上Java OOM问题定位与解决方案超详细解析

《线上JavaOOM问题定位与解决方案超详细解析》OOM是JVM抛出的错误,表示内存分配失败,:本文主要介绍线上JavaOOM问题定位与解决方案的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录一、OOM问题核心认知1.1 OOM定义与技术定位1.2 OOM常见类型及技术特征二、OOM问题定位工具

基于 Cursor 开发 Spring Boot 项目详细攻略

《基于Cursor开发SpringBoot项目详细攻略》Cursor是集成GPT4、Claude3.5等LLM的VSCode类AI编程工具,支持SpringBoot项目开发全流程,涵盖环境配... 目录cursor是什么?基于 Cursor 开发 Spring Boot 项目完整指南1. 环境准备2. 创建

Spring Security简介、使用与最佳实践

《SpringSecurity简介、使用与最佳实践》SpringSecurity是一个能够为基于Spring的企业应用系统提供声明式的安全访问控制解决方案的安全框架,本文给大家介绍SpringSec... 目录一、如何理解 Spring Security?—— 核心思想二、如何在 Java 项目中使用?——

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

springboot中使用okhttp3的小结

《springboot中使用okhttp3的小结》OkHttp3是一个JavaHTTP客户端,可以处理各种请求类型,比如GET、POST、PUT等,并且支持高效的HTTP连接池、请求和响应缓存、以及异... 在 Spring Boot 项目中使用 OkHttp3 进行 HTTP 请求是一个高效且流行的方式。

java.sql.SQLTransientConnectionException连接超时异常原因及解决方案

《java.sql.SQLTransientConnectionException连接超时异常原因及解决方案》:本文主要介绍java.sql.SQLTransientConnectionExcep... 目录一、引言二、异常信息分析三、可能的原因3.1 连接池配置不合理3.2 数据库负载过高3.3 连接泄漏