C++利用开散列哈希表封装unordered_set,unordered_map

2024-03-21 21:04

本文主要是介绍C++利用开散列哈希表封装unordered_set,unordered_map,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

C++利用开散列哈希表封装unordered_set,unordered_map

  • 一.前言
    • 1.开散列的哈希表完整代码
  • 二.模板参数
    • 1.HashNode的改造
    • 2.封装unordered_set和unordered_map的第一步
      • 1.unordered_set
      • 2.unordered_map
    • 3.HashTable
  • 三.string的哈希函数的模板特化
  • 四.迭代器类
    • 1.operator++运算符重载
      • 1.动图演示+分析
      • 2.需要哈希表的地址,怎么办?
        • 1.解决双向依赖问题
        • 2.解决私有成员问题
    • 2.const迭代器的问题
    • 3.迭代器类的定义
    • 4.迭代器类的完善
      • 1.解引用和== !=
        • 1.解引用
        • 2.== !=
      • 2.operator++
      • 3.迭代器类的完整代码
  • 五.哈希表的修改
    • 1.begin和end
    • 2.insert
    • 3.find
    • 4.哈希表的完整代码
  • 六.unordered_set的完整代码
  • 七.unordered_map的完整代码
  • 八.test.cpp

一.前言

1.之前我们已经实现了开散列的哈希表,今天我们来用它封装unordered_set,unordered_map
2.本文的封装比利用红黑树封装set和map更加复杂
建议大家先去看我的红黑树封装set和map再来看本文
因为有很多地方跟红黑树封装set和map时是同样的思路和方法,所以本文不会太去赘述一遍

1.开散列的哈希表完整代码

namespace hash_bucket
{//HashFunc<int>template<class K>//整型的哈希函数struct HashFunc{size_t operator()(const K& key){return (size_t)key;}};//HashFunc<string>//string的哈希函数template<>struct HashFunc<string>{size_t operator()(const string& key){// BKDRsize_t hash = 0;for (auto e : key){hash *= 131;hash += e;}return hash;}};template<class K, class V>struct HashNode{HashNode* _next;pair<K, V> _kv;HashNode(const pair<K, V>& kv):_kv(kv), _next(nullptr){}};template<class K, class V, class Hash = HashFunc<K>>class HashTable{typedef HashNode<K, V> Node;public:HashTable(){_tables.resize(10);}~HashTable(){for (int i = 0; i < _tables.size(); i++){Node* cur = _tables[i];while (cur){Node* next = cur->_next;delete cur;cur = next;}_tables[i] = nullptr;}}bool Insert(const pair<K, V>& kv){//先查找在不在//如果在,返回false,插入失败if (Find(kv.first)){return false;}//扩容if (_n == _tables.size()){//开辟新的哈希表HashTable newtable;int newcapacity = _tables.size() * 2;//扩2倍newtable._tables.resize(newcapacity);//转移数据for (int i = 0; i < _tables.size(); i++){Node* cur = _tables[i];while (cur){Node* next = cur->_next;int hashi = hash(cur->_kv.first) % newtable._tables.size();cur->_next = newtable._tables[hashi];newtable._tables[hashi] = cur;cur = next;}//防止出现野指针导致重复析构..._tables[i] = nullptr;}//交换两个vector,从而做到交换两个哈希表//通过学习vector的模拟实现,我们知道vector进行交换时只交换first,finish,end_of_storage_tables.swap(newtable._tables);}//1.利用哈希函数计算需要插入到那个桶里面int hashi = hash(kv.first) % _tables.size();//头插Node* newnode = new Node(kv);newnode->_next = _tables[hashi];_tables[hashi] = newnode;++_n;return true;}Node* Find(const K& key){int hashi = hash(key) % _tables.size();Node* cur = _tables[hashi];while (cur){if (cur->_kv.first == key){return cur;}cur = cur->_next;}return nullptr;}bool Erase(const K& key){int hashi = hash(key) % _tables.size();Node* cur = _tables[hashi], * prev = nullptr;while (cur){if (cur->_kv.first == key){if (cur == _tables[hashi]){_tables[hashi] = cur->_next;}else{prev->_next = cur->_next;}return true;}prev = cur;cur = cur->_next;}return false;}private://哈希表是一个指针数组vector<Node*> _tables;size_t _n = 0;Hash hash;};
}

二.模板参数

1.HashNode的改造

因为unordered_set是Key模型的容器
unordered_map是Key-Value模型的容器,所以需要对节点结构体进行改造

template<class V>
struct HashNode
{HashNode* _next;V _kv;HashNode(const V& kv):_kv(kv), _next(nullptr){}
};

2.封装unordered_set和unordered_map的第一步

1.对于模板参数V:
如果是unordered_set:传入底层哈希表的就是Key,Key
如果是unordered_map:传入底层哈希表的就是Key,pair<const Key,Value>

2.为了取出关键字Key,需要传入仿函数
如果是unordered_set:仿函数返回Key
如果是unordered_map:仿函数返回pair<const Key,Value>的first

3.哈希函数需要传给unordered_set和unordered_map
由unordered_set和unordered_map传给底层的哈希表

1.unordered_set

namespace hash_bucket
{template<class K ,class Hash = HashFunc<K>>class unordered_set{struct SetofKey{const K& operator()(const K& k){return k;}};private:HashTable<K, K,SetofKey,Hash> _ht;};
}

2.unordered_map

namespace hash_bucket
{template<class K,class V, class Hash = HashFunc<K>>class unordered_map{struct MapofKey{const K& operator()(const pair<const K, V>& k){return k.first;}};private:HashTable<K, pair<const K, V>, MapofKey,Hash> _ht;};
}

3.HashTable

哈希表增加模板参数
1.K:就是关键字

2.V:就是具体存放的数据类型(unordered_set就是Key , unordered_map就是pair<const Key,Value>)

3.KeyofT:不同容器传入的取出其关键字的仿函数

如果是unordered_set:仿函数返回Key
如果是unordered_map:仿函数返回pair<const Key,Value>的first

4.Hash:仿函数,哈希函数,用于计算下标的

template<class K, class V,class KeyofT, class Hash>
class HashTable
{
......
private://哈希表是一个指针数组vector<Node*> _tables;size_t _n = 0;Hash hash;//哈希函数的仿函数对象KeyofT _kot;//KeyofT的仿函数对象
};

三.string的哈希函数的模板特化

因为string类型的哈希映射太常用了,
所以这里使用了模板特化,以免每次要存放string时都要指名传入string的哈希函数

//HashFunc<int>
template<class K>
//整型的哈希函数
struct HashFunc
{size_t operator()(const K& key){return (size_t)key;}
};//HashFunc<string>
//string的哈希函数
template<>
struct HashFunc<string>
{size_t operator()(const string& key){// BKDRsize_t hash = 0;for (auto e : key){hash *= 131;hash += e;}return hash;}
};

四.迭代器类

1.这里的哈希表只支持正向迭代器,不支持反向迭代器

1.operator++运算符重载

1.动图演示+分析

++有2种情况:

1.如果当前节点所在的当前哈希桶的后面还有节点,那么直接走到next节点即可
在这里插入图片描述
如果当前节点所在的当前哈希桶的后面没有节点了,那么就要走到下一个不为空的哈希桶才可以
在这里插入图片描述
如果后面没有不为空的哈希桶了,返回nullptr
在这里插入图片描述

2.需要哈希表的地址,怎么办?

我们可以在迭代器里面加入一个哈希表的指针,要求你给我传入你这个哈希表的地址,让我找到你这个哈希表(其实也可以加入一个vector<Node*>的指针,这样就不用传入哈希表指针了,这里以传入哈希表指针来演示,为了介绍如何解决双向依赖问题和友元声明问题)

同时也可以加入一个_hashi代表当前迭代器位于哈希表当中的下标

不过我们发现:
此时出现了一种鸡生蛋,蛋生鸡的双向依赖问题了
我们的迭代器有一个成员:哈希表的指针
哈希表有一个typedef后的类型:迭代器

我们之前的vector,list,set,map的迭代器都是单向依赖关系
只存在容器依赖迭代器而已,可是这里容器和迭代器双向依赖啊,怎么办呢?

1.解决双向依赖问题

我们可以将哈希表前置声明一下

//HashTable的前置声明
template<class K, class V, class KeyofT, class Hash>class HashTable;template<class K,class V,class Ref,class Ptr,class KeyofT, class Hash>
struct __HashIterator
{....}
2.解决私有成员问题

不过我们注意到:我们的迭代器类里面只有哈希表的指针
属于哈希表的外部,而哈希表的vector数组是它的私有成员,我们在迭代器类里面是无法访问的
怎么办呢?

1.在哈希表当中加一个getTable函数,让外界能够获取到内部的vector
2.将迭代器类在哈希表当中进行友元声明

template<class K, class V,class KeyofT, class Hash>
class HashTable
{typedef HashNode<V> Node;template<class K, class V,class Ref,class Ptr, class KeyofT, class Hash>friend struct __HashIterator;

注意:类模板的友元声明时需要加上template<…>

2.const迭代器的问题

为了解决unordered_map的[]与const迭代器问题
我们在迭代器类里面给了三个重载版本的构造函数

template<class K,class V,class Ref,class Ptr,class KeyofT, class Hash>
struct __HashIterator
{typedef HashNode<V> Node;Node* _node;const HashTable<K, V, KeyofT, Hash>* _pht;size_t _hashi;//当前迭代器位于哈希表当中的下标typedef __HashIterator<K, V,Ref,Ptr, KeyofT, Hash> Self;typedef __HashIterator<K, V, V&, V*, KeyofT, Hash> iterator;
public:__HashIterator(Node* node, HashTable<K, V, KeyofT, Hash>* pht,size_t hashi):_node(node),_pht(pht),_hashi(hashi){}__HashIterator(Node* node,const HashTable<K, V, KeyofT, Hash>* pht, size_t hashi):_node(node), _pht(pht), _hashi(hashi){}__HashIterator(const iterator& it):_node(it._node),_pht(it._pht),_hashi(it._hashi){}
....
};

3.迭代器类的定义

//HashTable的前置声明
template<class K, class V, class KeyofT, class Hash>class HashTable;template<class K,class V,class Ref,class Ptr,class KeyofT, class Hash>
struct __HashIterator
{typedef HashNode<V> Node;Node* _node;const HashTable<K, V, KeyofT, Hash>* _pht;size_t _hashi;//当前迭代器位于哈希表当中的下标typedef __HashIterator<K, V,Ref,Ptr, KeyofT, Hash> Self;typedef __HashIterator<K, V, V&, V*, KeyofT, Hash> iterator;
public:__HashIterator(Node* node, HashTable<K, V, KeyofT, Hash>* pht,size_t hashi):_node(node),_pht(pht),_hashi(hashi){}__HashIterator(Node* node,const HashTable<K, V, KeyofT, Hash>* pht, size_t hashi):_node(node), _pht(pht), _hashi(hashi){}__HashIterator(const iterator& it):_node(it._node),_pht(it._pht),_hashi(it._hashi){}bool operator==(const Self& s);bool operator!=(const Self& s);Ref operator*();Ptr operator->();Self& operator++();
};

4.迭代器类的完善

1.解引用和== !=

1.解引用

注意:解引用返回的是当前位置的Value,也就是节点指针里面的值
我们回顾一下节点结构体的定义
_kv这个数据才是真正的Value,因此解引用返回_kv

template<class V>
struct HashNode
{HashNode* _next;V _kv;HashNode(const V& kv):_kv(kv), _next(nullptr){}
};
Ref operator*()
{return _node->_kv;
}Ptr operator->()
{return &_node->_kv;
}
2.== !=

关于比较,跟list迭代器一样,比较节点指针的值,而不是迭代器本身的值

bool operator==(const Self& s)
{return _node == s._node;
}bool operator!=(const Self& s)
{return _node != s._node;
}

2.operator++

看过刚才operator++的动图演示+分析之后,我们就能很好地写出operator++来了

Self& operator++()
{//当前哈希桶的当前节点后面还有数据,往后走即可if (_node->_next){_node = _node->_next;}//当前哈希桶的当前节点后面没有数据了,去找下一个不为空的哈希桶else{++_hashi;while (_hashi < _pht->_tables.size()){if (_pht->_tables[_hashi]){_node = _pht->_tables[_hashi];break;}_hashi++;}//说明找不到不为空的哈希桶了,也就是说到末尾了if (_hashi == _pht->_tables.size()){_node = nullptr;}}return *this;
}

注意:
我们这里的哈希桶是单链表,因此并不支持双向遍历,也就不支持反向迭代器,所以没有实现operator–的重载

3.迭代器类的完整代码

template<class K, class V, class KeyofT, class Hash>
class HashTable;template<class K,class V,class Ref,class Ptr,class KeyofT, class Hash>
struct __HashIterator
{typedef HashNode<V> Node;Node* _node;const HashTable<K, V, KeyofT, Hash>* _pht;size_t _hashi;//当前迭代器位于哈希表当中的下标typedef __HashIterator<K, V,Ref,Ptr, KeyofT, Hash> Self;typedef __HashIterator<K, V, V&, V*, KeyofT, Hash> iterator;
public:__HashIterator(Node* node, HashTable<K, V, KeyofT, Hash>* pht,size_t hashi):_node(node),_pht(pht),_hashi(hashi){}__HashIterator(Node* node,const HashTable<K, V, KeyofT, Hash>* pht, size_t hashi):_node(node), _pht(pht), _hashi(hashi){}__HashIterator(const iterator& it):_node(it._node),_pht(it._pht),_hashi(it._hashi){}bool operator==(const Self& s){return _node == s._node;}bool operator!=(const Self& s){return _node != s._node;}Ref operator*(){return _node->_kv;}Ptr operator->(){return &_node->_kv;}Self& operator++(){//当前哈希桶的当前节点后面还有数据,往后走即可if (_node->_next){_node = _node->_next;}//当前哈希桶的当前节点后面没有数据了,去找下一个不为空的哈希桶else{++_hashi;while (_hashi < _pht->_tables.size()){if (_pht->_tables[_hashi]){_node = _pht->_tables[_hashi];break;}_hashi++;}//说明找不到不为空的哈希桶了,也就是说到末尾了if (_hashi == _pht->_tables.size()){_node = nullptr;}}return *this;}
};

五.哈希表的修改

1.begin和end

实现迭代器类之后,我们在哈希表里面增加begin和end
begin就是返回第一个不为空的哈希桶的节点构造出的迭代器
end直接用nullptr来构造即可

注意:如何传入哈希表指针呢? 不要忘了this指针

public:typedef __HashIterator<K, V, V&, V*, KeyofT, Hash> iterator;typedef __HashIterator<K, V,const V&,const V*, KeyofT, Hash> const_iterator;iterator begin(){for (int i = 0; i < _tables.size(); i++){if (_tables[i]){return iterator(_tables[i], this, i);}}return iterator(nullptr, this, -1);//因为hash迭代器当中的hashi是size_t类型,所以给-1}iterator end(){return iterator(nullptr, this, -1);//因为hash迭代器当中的hashi是size_t类型,所以给-1}const_iterator begin() const{for (int i = 0; i < _tables.size(); i++){if (_tables[i]){return const_iterator(_tables[i], this, i);}}return const_iterator(nullptr, this, -1);//因为hash迭代器当中的hashi是size_t类型,所以给-1}const_iterator end() const{return const_iterator(nullptr, this, -1);//因为hash迭代器当中的hashi是size_t类型,所以给-1}

2.insert

1.这里需要使用KeyofT类型的仿函数对象_kot来取出关键字Key
用关键字Key进行哈希映射,如何进行哈希映射呢?
使用Hash类型的仿函数对象hash即可

所以需要嵌套使用仿函数对象

我们把_kot,hash这两个仿函数对象定义成成员变量了,所以直接使用即可

2.我们只需要修改返回值,哈希映射逻辑,查找方法即可

我们要将insert的返回值修改为pair<iterator,bool>
如果有重复元素,返回重复元素所对应的节点构造出的迭代器
如果没有重复元素,返回新插入节点构造出的迭代器

pair<iterator,bool> Insert(const V& kv)
{//先查找在不在//如果在,返回false,插入失败iterator it = Find(_kot(kv));if (it != end()){return make_pair(it, false);}//扩容if (_n == _tables.size()){//开辟新的哈希表HashTable newtable;int newcapacity = _tables.size() * 2;//扩2倍newtable._tables.resize(newcapacity);//转移数据for (int i = 0; i < _tables.size(); i++){Node* cur = _tables[i];while (cur){Node* next = cur->_next;int hashi = hash(_kot(cur->_kv)) % newtable._tables.size();cur->_next = newtable._tables[hashi];newtable._tables[hashi] = cur;cur = next;}//防止出现野指针导致重复析构..._tables[i] = nullptr;}//交换两个vector,从而做到交换两个哈希表//通过学习vector的模拟实现,我们知道vector进行交换时只交换first,finish,end_of_storage_tables.swap(newtable._tables);}//1.利用哈希函数计算需要插入到那个桶里面int hashi = hash(_kot(kv)) % _tables.size();//头插Node* newnode = new Node(kv);newnode->_next = _tables[hashi];_tables[hashi] = newnode;++_n;return make_pair(iterator(newnode, this, hashi),true);
}

3.find

对于find我们只需要修改返回值即可
对于find和erase,我们无需通过_kot取出关键字,因为find和erase的参数类型就是K,就是关键字
而insert的类型是V,所以insert才需要_kot来取出关键字

erase的返回值依旧是bool,无需修改erase这个代码

iterator Find(const K& key)
{int hashi = hash(key) % _tables.size();Node* cur = _tables[hashi];while (cur){if (_kot(cur->_kv) == key){return iterator(cur, this, hashi);}cur = cur->_next;}return end();
}

对于构造和析构无需修改

4.哈希表的完整代码

#pragma once
#include<vector>
#include <string>
namespace hash_bucket
{//HashFunc<int>template<class K>//整型的哈希函数struct HashFunc{size_t operator()(const K& key){return (size_t)key;}};//HashFunc<string>//string的哈希函数template<>struct HashFunc<string>{size_t operator()(const string& key){// BKDRsize_t hash = 0;for (auto e : key){hash *= 131;hash += e;}return hash;}};template<class V>struct HashNode{HashNode* _next;V _kv;HashNode(const V& kv):_kv(kv), _next(nullptr){}};//template<class K, class V, class KeyofT, class Hash = HashFunc<K>>//类模板的声明当中不能给缺省值template<class K, class V, class KeyofT, class Hash>class HashTable;template<class K,class V,class Ref,class Ptr,class KeyofT, class Hash>struct __HashIterator{typedef HashNode<V> Node;Node* _node;const HashTable<K, V, KeyofT, Hash>* _pht;size_t _hashi;//当前迭代器位于哈希表当中的下标typedef __HashIterator<K, V,Ref,Ptr, KeyofT, Hash> Self;typedef __HashIterator<K, V, V&, V*, KeyofT, Hash> iterator;public:__HashIterator(Node* node, HashTable<K, V, KeyofT, Hash>* pht,size_t hashi):_node(node),_pht(pht),_hashi(hashi){}__HashIterator(Node* node,const HashTable<K, V, KeyofT, Hash>* pht, size_t hashi):_node(node), _pht(pht), _hashi(hashi){}__HashIterator(const iterator& it):_node(it._node),_pht(it._pht),_hashi(it._hashi){}bool operator==(const Self& s){return _node == s._node;}bool operator!=(const Self& s){return _node != s._node;}Ref operator*(){return _node->_kv;}Ptr operator->(){return &_node->_kv;}Self& operator++(){//当前哈希桶的当前节点后面还有数据,往后走即可if (_node->_next){_node = _node->_next;}//当前哈希桶的当前节点后面没有数据了,去找下一个不为空的哈希桶else{++_hashi;while (_hashi < _pht->_tables.size()){if (_pht->_tables[_hashi]){_node = _pht->_tables[_hashi];break;}_hashi++;}//说明找不到不为空的哈希桶了,也就是说到末尾了if (_hashi == _pht->_tables.size()){_node = nullptr;}}return *this;}};template<class K, class V,class KeyofT, class Hash>class HashTable{typedef HashNode<V> Node;template<class K, class V,class Ref,class Ptr, class KeyofT, class Hash>//类模板的友元声明当中不能给缺省值friend struct __HashIterator;public:typedef __HashIterator<K, V, V&, V*, KeyofT, Hash> iterator;typedef __HashIterator<K, V,const V&,const V*, KeyofT, Hash> const_iterator;iterator begin(){for (int i = 0; i < _tables.size(); i++){if (_tables[i]){return iterator(_tables[i], this, i);}}return iterator(nullptr, this, -1);//因为hash迭代器当中的hashi是size_t类型,所以给-1}iterator end(){return iterator(nullptr, this, -1);//因为hash迭代器当中的hashi是size_t类型,所以给-1}const_iterator begin() const{for (int i = 0; i < _tables.size(); i++){if (_tables[i]){return const_iterator(_tables[i], this, i);}}return const_iterator(nullptr, this, -1);//因为hash迭代器当中的hashi是size_t类型,所以给-1}const_iterator end() const{return const_iterator(nullptr, this, -1);//因为hash迭代器当中的hashi是size_t类型,所以给-1}HashTable(){_tables.resize(10);}~HashTable(){for (int i = 0; i < _tables.size(); i++){Node* cur = _tables[i];while (cur){Node* next = cur->_next;delete cur;cur = next;}_tables[i] = nullptr;}}pair<iterator,bool> Insert(const V& kv){//先查找在不在//如果在,返回false,插入失败iterator it = Find(_kot(kv));if (it != end()){return make_pair(it, false);}//扩容if (_n == _tables.size()){//开辟新的哈希表HashTable newtable;int newcapacity = _tables.size() * 2;//扩2倍newtable._tables.resize(newcapacity);//转移数据for (int i = 0; i < _tables.size(); i++){Node* cur = _tables[i];while (cur){Node* next = cur->_next;int hashi = hash(_kot(cur->_kv)) % newtable._tables.size();cur->_next = newtable._tables[hashi];newtable._tables[hashi] = cur;cur = next;}//防止出现野指针导致重复析构..._tables[i] = nullptr;}//交换两个vector,从而做到交换两个哈希表//通过学习vector的模拟实现,我们知道vector进行交换时只交换first,finish,end_of_storage_tables.swap(newtable._tables);}//1.利用哈希函数计算需要插入到那个桶里面int hashi = hash(_kot(kv)) % _tables.size();//头插Node* newnode = new Node(kv);newnode->_next = _tables[hashi];_tables[hashi] = newnode;++_n;return make_pair(iterator(newnode, this, hashi),true);}iterator Find(const K& key){int hashi = hash(key) % _tables.size();Node* cur = _tables[hashi];while (cur){if (_kot(cur->_kv) == key){return iterator(cur, this, hashi);}cur = cur->_next;}return end();}bool Erase(const K& key){int hashi = hash(key) % _tables.size();Node* cur = _tables[hashi], * prev = nullptr;while (cur){if (_kot(cur->_kv) == key){if (cur == _tables[hashi]){_tables[hashi] = cur->_next;}else{prev->_next = cur->_next;}return true;}prev = cur;cur = cur->_next;}return false;}private://哈希表是一个指针数组vector<Node*> _tables;size_t _n = 0;Hash hash;KeyofT _kot;};
}

六.unordered_set的完整代码

unordered_set直接复用哈希表的接口即可

#pragma once
namespace hash_bucket
{template<class K ,class Hash = HashFunc<K>>class unordered_set{struct SetofKey{const K& operator()(const K& k){return k;}};public:typedef typename HashTable<K, K, SetofKey,Hash>::const_iterator iterator;typedef typename HashTable<K, K, SetofKey,Hash>::const_iterator const_iterator;pair<iterator,bool> insert(const K& k){return _ht.Insert(k);}iterator find(const K& k){return _ht.Find(k);}bool erase(const K& k){return _ht.Erase(k);}iterator begin() const{return _ht.begin();}iterator end() const{return _ht.end();}private:HashTable<K, K,SetofKey,Hash> _ht;};
}

七.unordered_map的完整代码

unordered_map直接复用哈希表的接口即可

#pragma once
namespace hash_bucket
{template<class K,class V, class Hash = HashFunc<K>>class unordered_map{struct MapofKey{const K& operator()(const pair<const K, V>& k){return k.first;}};public:typedef typename HashTable<K, pair<const K, V>, MapofKey,Hash>::iterator iterator;typedef typename HashTable<K, pair<const K, V>, MapofKey,Hash>::const_iterator const_iterator;pair<iterator, bool> insert(const pair<const K, V>& k){return _ht.Insert(k);}iterator find(const K& k){return _ht.Find(k);}bool erase(const K& k){return _ht.Erase(k);}iterator begin(){return _ht.begin();}iterator end() {return _ht.end();}const_iterator begin() const{return _ht.begin();}const_iterator end() const{return _ht.end();}V& operator[](const K& k){pair<iterator, bool> ret = insert(make_pair(k, V()));return ret.first->second;}const V& operator[](const K& k) const{pair<iterator, bool> ret = insert(make_pair(k, V()));return ret.first->second;}private:HashTable<K, pair<const K, V>, MapofKey,Hash> _ht;};
}

八.test.cpp

#include <iostream>
using namespace std;
#include "HashTable.h"
#include "MyUnOrdered_Set.h"
#include "MyUnOrdered_Map.h"
namespace hash_bucket
{void test1(){unordered_set<int> s;int a[] = { 4,14,24,34,5,7,1,15,25,3,13 };for (auto e : a){s.insert(e);}unordered_set<int>::iterator it = s.begin();while (it != s.end()){//*it = 10;//不能改cout << *it << " ";++it;}cout << endl;s.erase(13);it = s.find(13);if (it != s.end()){cout << *it << endl;}unordered_set<int>::const_iterator cit = s.begin();while (cit != s.end()){//*cit = 10;//不能改cout << *cit << " ";++cit;}}void test2(){unordered_map<int, int> m;int a[] = { 1,2,4,5,99,331,243 };for (auto& e : a){m.insert(make_pair(e, e));}unordered_map<int, int>::iterator it = m.begin();while (it != m.end()){//it->second = 999;//能改//it->first = 999;//不能改cout << it->first << ":" << it->second << endl;++it;}cout << endl;m.erase(4);it = m.find(4);if (it != m.end()){cout << it->first << ":" << it->second << endl;}else{cout << "没查到" << endl;}unordered_map<int, int>::const_iterator cit = m.begin();while (cit != m.end()){//cit->second = 999;//不能改//cit->first = 999;//不能改cout << cit->first << ":" << cit->second << endl;++cit;}cout << endl;}void test3(){string arr[] = {"a","b","c","ab","ab","ab","kks","qdq"};unordered_map<string, int> ht;for (auto& e : arr){ht[e]++;}unordered_map<string, int>::iterator it = ht.begin();while (it != ht.end()){//it->second = 999;//能改//it->first = 999;//不能改cout << it->first << ":" << it->second << endl;++it;}cout << endl;}}
int main()
{hash_bucket::test1();hash_bucket::test2();hash_bucket::test3();return 0;
}

在这里插入图片描述
验证成功

以上就是C++利用开散列哈希表封unordered_set,unordered_map的全部内容,希望能对大家有所帮助!

这篇关于C++利用开散列哈希表封装unordered_set,unordered_map的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/833877

相关文章

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

深入解析C++ 中std::map内存管理

《深入解析C++中std::map内存管理》文章详解C++std::map内存管理,指出clear()仅删除元素可能不释放底层内存,建议用swap()与空map交换以彻底释放,针对指针类型需手动de... 目录1️、基本清空std::map2️、使用 swap 彻底释放内存3️、map 中存储指针类型的对象

C++ STL-string类底层实现过程

《C++STL-string类底层实现过程》本文实现了一个简易的string类,涵盖动态数组存储、深拷贝机制、迭代器支持、容量调整、字符串修改、运算符重载等功能,模拟标准string核心特性,重点强... 目录实现框架一、默认成员函数1.默认构造函数2.构造函数3.拷贝构造函数(重点)4.赋值运算符重载函数

C++ vector越界问题的完整解决方案

《C++vector越界问题的完整解决方案》在C++开发中,std::vector作为最常用的动态数组容器,其便捷性与性能优势使其成为处理可变长度数据的首选,然而,数组越界访问始终是威胁程序稳定性的... 目录引言一、vector越界的底层原理与危害1.1 越界访问的本质原因1.2 越界访问的实际危害二、基

Python用Flask封装API及调用详解

《Python用Flask封装API及调用详解》本文介绍Flask的优势(轻量、灵活、易扩展),对比GET/POST表单/JSON请求方式,涵盖错误处理、开发建议及生产环境部署注意事项... 目录一、Flask的优势一、基础设置二、GET请求方式服务端代码客户端调用三、POST表单方式服务端代码客户端调用四

c++日志库log4cplus快速入门小结

《c++日志库log4cplus快速入门小结》文章浏览阅读1.1w次,点赞9次,收藏44次。本文介绍Log4cplus,一种适用于C++的线程安全日志记录API,提供灵活的日志管理和配置控制。文章涵盖... 目录简介日志等级配置文件使用关于初始化使用示例总结参考资料简介log4j 用于Java,log4c

C++归并排序代码实现示例代码

《C++归并排序代码实现示例代码》归并排序将待排序数组分成两个子数组,分别对这两个子数组进行排序,然后将排序好的子数组合并,得到排序后的数组,:本文主要介绍C++归并排序代码实现的相关资料,需要的... 目录1 算法核心思想2 代码实现3 算法时间复杂度1 算法核心思想归并排序是一种高效的排序方式,需要用

C++11范围for初始化列表auto decltype详解

《C++11范围for初始化列表autodecltype详解》C++11引入auto类型推导、decltype类型推断、统一列表初始化、范围for循环及智能指针,提升代码简洁性、类型安全与资源管理效... 目录C++11新特性1. 自动类型推导auto1.1 基本语法2. decltype3. 列表初始化3

C++11右值引用与Lambda表达式的使用

《C++11右值引用与Lambda表达式的使用》C++11引入右值引用,实现移动语义提升性能,支持资源转移与完美转发;同时引入Lambda表达式,简化匿名函数定义,通过捕获列表和参数列表灵活处理变量... 目录C++11新特性右值引用和移动语义左值 / 右值常见的左值和右值移动语义移动构造函数移动复制运算符

C++中detach的作用、使用场景及注意事项

《C++中detach的作用、使用场景及注意事项》关于C++中的detach,它主要涉及多线程编程中的线程管理,理解detach的作用、使用场景以及注意事项,对于写出高效、安全的多线程程序至关重要,下... 目录一、什么是join()?它的作用是什么?类比一下:二、join()的作用总结三、join()怎么