每日文献【2020|001】基于自适应回归扩展卡尔曼滤波的电动汽车动力电池全生命周期的荷电状态估算方法

本文主要是介绍每日文献【2020|001】基于自适应回归扩展卡尔曼滤波的电动汽车动力电池全生命周期的荷电状态估算方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

每日文献 |
带你坚持阅读
掌握行业最前沿技术

扫描下方二维码,进入微信公众号

文献 |
刘 芳,马杰,苏卫星等
基于自适应回归扩展卡尔曼滤波的电动汽车动力电池全生命周期的荷电状态估算方法
电工技术学报


该文针对传统扩展卡尔曼滤波(EKF)算法对电池数学模型精确的高度依赖与动态电池模型难以精确获得之间的矛盾问题,提出一种完全数据驱动的基于改进EKF算法的动力电池全生命周期荷电状态(SOC)估计方法。该方法为数据驱动的SOC估计方法和基于模型的SOC估计方法的良好结合,其优点在于:一方面抑制数据驱动方法存在累积误差的问题,并保留其良好的动态特性;另一方面改善基于模型的算法过度依赖电池模型的缺点,并保留其很好的鲁棒特性。该方法的创新之处在于将等效电路中难以获知的一部分视为以电池电流为输入,以内部电压为输出,以电池内部阻抗为时变参数的黑箱系统,并加以动态在线辨识,获得实时的动力电池真实状态,从而保证电池模型的准确性和动态性,真正实现动力电池全生命周期的SOC估算。

电池管理系统(Battery Management System, BMS)对电动汽车动力电池至关重要。其主要任务之一是通过估计动力电池的荷电状态(State of Charge, SOC)、健康状态(State of Health, SOH)、功率状态(State of
Power, SOP)等关键状态,确保动力电池在最佳运行状态下的安全性,已达到安全运行目的的同时,延长动力电池的使用寿命。

目前工程应用最为普遍的安时积分法,其计算复杂度较低,且易于实现,因此得到工程界的广泛认可,但其也有一定的局限性,如初始SOC不精确影响SOC估算精度,另外BMS检测的电流信号难免存在噪声、漂移等,而单纯的安时积分法会因此而无限制累积这种误差,导致其估算精度会逐渐下降,为此,工程上的解决办法为在动力电池截止电压处对其进行SOC修正。

基于模型的扩展卡尔曼滤波(Extended Kalman Filter, EKF)算法,因存在根据观测值矫正SOC的过程,而具有很好的鲁棒性,且准确性较高,但其估算精度高度依赖动力电池模型结构以及模型参数。

单纯基于数据的SOC估算方法,如基于神经网络的SOC估算方法,以及基于支持向量机(Support Vector Machine, SVM)的SOC估算方法等。此类算法不再依赖于动力电池模型结构以及电池参数,而是将动力电池视为黑箱,以可测得量作为输入(如电压、电流等),SOC作为输出,进行大量的模型训练,已获得精确的SOC 估算结果,此类算法完全基于数据,因此对数据质量较为依赖。数据不准确会影响神经网络训练的结果,另外此类算法网络结构复杂,前期需要大量数据训练。

回归(Auto Regression, AR)模型适用于平稳过程时间序列的预测模型,由于其是线性结构,因此计算量相对简单且具有在线更新特点;另外,AR模型完全基于数据驱动,而过程数据能够在动力电池全生命周期内真实地反应内部参数老化过程,因此采用AR模型对动力电池内部进行在线动态估算,能够较好地捕捉动力电池老化过程的变化。

综合AR模型以及EKF算法各自的优势,本文提出了一种完全数据驱动的基于AR-EKF的电动汽车动力电池全生命周期的SOC估算方法。基于AR-EKF算法的完整的SOC估计算法流程如下图所示。
在这里插入图片描述

电池模组实验验证解结果对比如下:
在这里插入图片描述

结论

本文提出了一种数据驱动的基于AE-EKF的电动汽车电池全生命周期的SOC估算方法。该方法将数据驱动的SOC 估计方法与基于模型的SOC估计方法有效地结合起来,可以避免数据驱动的SOC算法无法消除累积误差的问题,改善了基于模型的SOC估计方法过于依赖电池模型精度而导致的不适用于电动汽车等运行环境复杂多变且需要动力电池全生命周期的SOC估计要求。本文提出的SOC估计算法将内部电池阻抗模型视为具有慢时变特性的黑盒模型,进而采用基于AR模型对其动态建模分析,避免了由于电池一致性差、难以应用实验室测试数据的缺点,同时满足电池内部阻抗全生命周期的动态预估要求,使得本文提出的SOC 估计算法具有良好的动态特性。由于本文的主要思想是基于传统EKF的SOC估计方法,因此具有闭环校正SOC的结构,使得本文提出的动力电池全生命周期的SOC算法保留了传统EKF 算法的良好收敛性以及鲁棒特性。最后通过仿真验证说明了本文提出的数据驱动的基于AR-EKF的动力电池全生命周期SOC估计算法的实用性和有效性。

这篇关于每日文献【2020|001】基于自适应回归扩展卡尔曼滤波的电动汽车动力电池全生命周期的荷电状态估算方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/833372

相关文章

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法

Linux云服务器手动配置DNS的方法步骤

《Linux云服务器手动配置DNS的方法步骤》在Linux云服务器上手动配置DNS(域名系统)是确保服务器能够正常解析域名的重要步骤,以下是详细的配置方法,包括系统文件的修改和常见问题的解决方案,需要... 目录1. 为什么需要手动配置 DNS?2. 手动配置 DNS 的方法方法 1:修改 /etc/res

JavaScript对象转数组的三种方法实现

《JavaScript对象转数组的三种方法实现》本文介绍了在JavaScript中将对象转换为数组的三种实用方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友... 目录方法1:使用Object.keys()和Array.map()方法2:使用Object.entr

SpringBoot中ResponseEntity的使用方法举例详解

《SpringBoot中ResponseEntity的使用方法举例详解》ResponseEntity是Spring的一个用于表示HTTP响应的全功能对象,它可以包含响应的状态码、头信息及响应体内容,下... 目录一、ResponseEntity概述基本特点:二、ResponseEntity的基本用法1. 创

java中判断json key是否存在的几种方法

《java中判断jsonkey是否存在的几种方法》在使用Java处理JSON数据时,如何判断某一个key是否存在?本文就来介绍三种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的... 目http://www.chinasem.cn录第一种方法是使用 jsONObject 的 has 方法

java中ssh2执行多条命令的四种方法

《java中ssh2执行多条命令的四种方法》本文主要介绍了java中ssh2执行多条命令的四种方法,包括分号分隔、管道分隔、EOF块、脚本调用,可确保环境配置生效,提升操作效率,具有一定的参考价值,感... 目录1 使用分号隔开2 使用管道符号隔开3 使用写EOF的方式4 使用脚本的方式大家平时有没有遇到自

在Ubuntu上打不开GitHub的完整解决方法

《在Ubuntu上打不开GitHub的完整解决方法》当你满心欢喜打开Ubuntu准备推送代码时,突然发现终端里的gitpush卡成狗,浏览器里的GitHub页面直接变成Whoathere!警告页面... 目录一、那些年我们遇到的"红色惊叹号"二、三大症状快速诊断症状1:浏览器直接无法访问症状2:终端操作异常

Python打包成exe常用的四种方法小结

《Python打包成exe常用的四种方法小结》本文主要介绍了Python打包成exe常用的四种方法,包括PyInstaller、cx_Freeze、Py2exe、Nuitka,文中通过示例代码介绍的非... 目录一.PyInstaller11.安装:2. PyInstaller常用参数下面是pyinstal