数学建模预测类问题-PSO优化BP的电池荷电状态预测

2024-03-21 17:30

本文主要是介绍数学建模预测类问题-PSO优化BP的电池荷电状态预测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

​  1、BP神经网络

    BP神经网络是将网络的输出与期望输出间的误差归结为权值和阈值的“过错”,通过反向传播把误差“分摊”给各个神经元的权值和阈值。BP神经网络由3层组成,输入层,隐含层和输出层。结构图如下图所示。

​编辑

2、PSO优化BP神经网络

    由于BP神经网络初始权值和阈值会导致预测效果的不佳,因此可建立相关的适应度函数,使用PSO对BP神经网络的权值和阈值进行寻优,得到较好的预测效果。

3、部分代码

clc
clear all
%节点个数
inputnum=2;
hiddennum=5;
outputnum=1;k=rand(1,40);%k是1*2000的向量,里面是0-1的随机均匀分布的数
[m,n]=sort(k);%sort默认按升序进行排列,m是排序后的矩阵,n是索引
train0=xlsread('data02c','A2:C41')
% train0=xlsread('时域数据','B7:D48');
[a,b]=size(train0);%指标矩阵维度
input_train=train0(n(1:30),1:2)';
output_train=train0(n(1:30),3)';
input_test=train0(n(31:40),1:2)';
output_test=train0(n(31:40),3)';%选连样本输入输出数据归一化
[inputn,inputps]=mapminmax(input_train);
[outputn,outputps]=mapminmax(output_train);%构建网络
net=newff(inputn,outputn,hiddennum);% 参数初始化
%粒子群算法中的两个参数
c1 = 1.49445;
c2 = 1.49445;maxgen=100;   % 进化次数  
sizepop=20;   %种群规模Vmax=1;
Vmin=-1;
popmax=5;
popmin=-5;for i=1:sizepoppop(i,:)=5*rands(1,21);V(i,:)=rands(1,21);fitness(i)=fun(pop(i,:),inputnum,hiddennum,outputnum,net,inputn,outputn);
end% 个体极值和群体极值
[bestfitness bestindex]=min(fitness);
zbest=pop(bestindex,:);   %全局最佳
gbest=pop;    %个体最佳
fitnessgbest=fitness;   %个体最佳适应度值
fitnesszbest=bestfitness;   %全局最佳适应度值%% 迭代寻优
for i=1:maxgenifor j=1:sizepop%速度更新V(j,:) = V(j,:) + c1*rand*(gbest(j,:) - pop(j,:)) + c2*rand*(zbest - pop(j,:));V(j,find(V(j,:)>Vmax))=Vmax;V(j,find(V(j,:)<Vmin))=Vmin;%种群更新pop(j,:)=pop(j,:)+0.2*V(j,:);pop(j,find(pop(j,:)>popmax))=popmax;pop(j,find(pop(j,:)<popmin))=popmin;%自适应变异pos=unidrnd(21);if rand>0.95pop(j,pos)=5*rands(1,1);end%适应度值fitness(j)=fun(pop(j,:),inputnum,hiddennum,outputnum,net,inputn,outputn);endfor j=1:sizepop%个体最优更新if fitness(j) < fitnessgbest(j)gbest(j,:) = pop(j,:);fitnessgbest(j) = fitness(j);end%群体最优更新 if fitness(j) < fitnesszbestzbest = pop(j,:);fitnesszbest = fitness(j);endendyy(i)=fitnesszbest;    end%% 结果分析
plot(yy)
title(['适应度曲线  ' '终止代数=' num2str(maxgen)]);
xlabel('进化代数');ylabel('适应度');x=zbest;

4、结果展示

​编辑

​编辑

​编辑

这篇关于数学建模预测类问题-PSO优化BP的电池荷电状态预测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/833368

相关文章

Web服务器-Nginx-高并发问题

《Web服务器-Nginx-高并发问题》Nginx通过事件驱动、I/O多路复用和异步非阻塞技术高效处理高并发,结合动静分离和限流策略,提升性能与稳定性... 目录前言一、架构1. 原生多进程架构2. 事件驱动模型3. IO多路复用4. 异步非阻塞 I/O5. Nginx高并发配置实战二、动静分离1. 职责2

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

解决升级JDK报错:module java.base does not“opens java.lang.reflect“to unnamed module问题

《解决升级JDK报错:modulejava.basedoesnot“opensjava.lang.reflect“tounnamedmodule问题》SpringBoot启动错误源于Jav... 目录问题描述原因分析解决方案总结问题描述启动sprintboot时报以下错误原因分析编程异js常是由Ja

Python实战之SEO优化自动化工具开发指南

《Python实战之SEO优化自动化工具开发指南》在数字化营销时代,搜索引擎优化(SEO)已成为网站获取流量的重要手段,本文将带您使用Python开发一套完整的SEO自动化工具,需要的可以了解下... 目录前言项目概述技术栈选择核心模块实现1. 关键词研究模块2. 网站技术seo检测模块3. 内容优化分析模

Java实现复杂查询优化的7个技巧小结

《Java实现复杂查询优化的7个技巧小结》在Java项目中,复杂查询是开发者面临的“硬骨头”,本文将通过7个实战技巧,结合代码示例和性能对比,手把手教你如何让复杂查询变得优雅,大家可以根据需求进行选择... 目录一、复杂查询的痛点:为何你的代码“又臭又长”1.1冗余变量与中间状态1.2重复查询与性能陷阱1.

Python内存优化的实战技巧分享

《Python内存优化的实战技巧分享》Python作为一门解释型语言,虽然在开发效率上有着显著优势,但在执行效率方面往往被诟病,然而,通过合理的内存优化策略,我们可以让Python程序的运行速度提升3... 目录前言python内存管理机制引用计数机制垃圾回收机制内存泄漏的常见原因1. 循环引用2. 全局变

MySQL 表空却 ibd 文件过大的问题及解决方法

《MySQL表空却ibd文件过大的问题及解决方法》本文给大家介绍MySQL表空却ibd文件过大的问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录一、问题背景:表空却 “吃满” 磁盘的怪事二、问题复现:一步步编程还原异常场景1. 准备测试源表与数据

解决Nginx启动报错Job for nginx.service failed because the control process exited with error code问题

《解决Nginx启动报错Jobfornginx.servicefailedbecausethecontrolprocessexitedwitherrorcode问题》Nginx启... 目录一、报错如下二、解决原因三、解决方式总结一、报错如下Job for nginx.service failed bec

SysMain服务可以关吗? 解决SysMain服务导致的高CPU使用率问题

《SysMain服务可以关吗?解决SysMain服务导致的高CPU使用率问题》SysMain服务是超级预读取,该服务会记录您打开应用程序的模式,并预先将它们加载到内存中以节省时间,但它可能占用大量... 在使用电脑的过程中,CPU使用率居高不下是许多用户都遇到过的问题,其中名为SysMain的服务往往是罪魁

MySQ中出现幻读问题的解决过程

《MySQ中出现幻读问题的解决过程》文章解析MySQLInnoDB通过MVCC与间隙锁机制在可重复读隔离级别下解决幻读,确保事务一致性,同时指出性能影响及乐观锁等替代方案,帮助开发者优化数据库应用... 目录一、幻读的准确定义与核心特征幻读 vs 不可重复读二、mysql隔离级别深度解析各隔离级别的实现差异