controlnet前向代码解析

2024-03-21 16:10

本文主要是介绍controlnet前向代码解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

ControlNet|使用教程 各模型算法说明以及使用解析 - openAI本本介绍了如何在Stable Diffusion中使用ControlNet生成高质量图片的方法,包括骨骼提取、边缘线处理、引导设置、语义分割、涂鸦等功能的详细介绍,帮助用户快速上手使用ControlNet。https://openai.wiki/controlnet-guide.htmlcldm:controlnet版本的ldm

apply_uniformer=Uniformerdetector()
model=create_model('')
model.load_state_dict(load_state_dict('',location='cuda'))
ddim_sampler=DDIMSampler(model) 默认ddimimg:输入图片
prompt:
a_prompt:默认的好的prompt
n_prompt: 负面prompt
num_sample: 出几张图
image_resolution: 对controlnet中输入的图片进行最长边等比resize
detect_resolution: 
ddim_steps: 采样步数,一般20-30,值越大越精细
guess_mode:可以不写提示词
strength(control scales):  这里就是对应webui中的weights,代表controlnet生成图片的权重占比
影响,在controlnet代码中表示13步中control侧的影响,一共13个网络control侧weights=0,即不对
原始的sd进行梯度更新,但是如果对cond中的c_concat设为None,则默认不使用control,不会触发weights,
优先级高一点
guidance scale:   在webui中的这个参数是guidance和cfg有关系, 
1,中文为强度引导,在理解此功能之前,应该知道生成图片的步数功能,步数代表生成一张图片刷新计算
多少次,假设你设置的生成步数为20步,引导强度设置为1时,代表这20步中的每1步都会被controlnet
引导1次,个人认为强度数值为1,效果最佳。  
在contrilnet作者代码中是如下作用:
if unconditional_conditioning is None or unconditional_guidance_scale == 1.:model_output = self.model.apply_model(x, t, c)
else:model_t = self.model.apply_model(x, t, c)model_uncond = self.model.apply_model(x, t, unconditional_conditioning)model_output = model_uncond + unconditional_guidance_scale * (model_t - model_uncond)process->
input_image=HWC3(input_image)->
detected_map=apply_uniformer(resize_image(input_image,detect_resolution))->
detected_img=cv2.resize(detected_map)->
control=torch.from_numpy(detected_img)->cond={'c_concat':[control],'c_crossattn':
[model.get_learned_conditioning([prompt+a_prompt])]}->
un_cond={'c_concat':[None if guess_mode else [control],
'c_crossattn':[model.get_learned_conditioning([n_prompt])]]}->
model.control_scales=[strength*(0.825**float(12-i)) for i in range(13)] 
if guess_mode else ([strength]*13)->
samples,_=ddim_sampler.sample(ddim_steps,num_samples,shape,cond,verbose=False,
eta=eta,unconditional_guidance_scale=scale,unconditional_conditioning=uncond)->
= make_schedule(ddim_num_steps=ddim_steps,ddim_eta=eta)->
== ddim_timesteps=make_ddim_timesteps()->
= samplers,intermediates=ddim_sampler(condition,size...unconditional_guidance_scale,
unconditional_conditioning)->
== img=torch.randn(shape)->
== ts=torch.full((b,),step,device)->
== timesteps=ddpm_num_timesteps->
== outs=p_sample_ddim(img,cond,ts,...)->
=== model_t=model.apply_model(x(img),t(ts),c(cond))->
- diffusion_model=model.diffusion_model->
- cond_txt=torch.cat(cond['c_crossattn',1])->
- control=control_model(x_noisy,hint=torch.cat(cond['c_concat'],1),t,cond_txt)->
-- t_emb=timestep_embedding(timesteps,model_channels,repeat_only=False)->
-- emb=time_embed(t_embed)->
-- guided_hint=TimestepEmbedSequential(hint,emd,context)->
-- input_blocks,sero_convs->
-- h=middle_block(h,emb,context)->
-- outs.append(middle_block_out(h,emb,context))->
- control=[c*scale for c,scale in zip(control,control_scales)]->
- eps=diffusion_model(x_noisy,t,cond_txt,control,only_mid_control)->
-- t_emb=timestep_embedding(timesteps,model_channels,repeat_only)->
-- emb=time_embed(t_emb)->
-- h=module(h,emb,context)->
-- h=middle_block(h,emb,context)->
-- only_mid_control->只在中间阶段添加control,但是control=None,则都不添加->
-- h=torch.cat([h,hs.pop()+control.pop()],dim=1)->
-- h=module(h,emb,context)->
-- out(h)->
=== model_uncond=model.apply_model(x,t,unconditional_conditioning)->
=== model_output=model_uncond+unconditional_guidance_scale*(model_t-model_uncond)->
=== pred_x0,-,-=model.first_stage_model.quantize(pred_x0)->
x_samples=model.decode_first_stage(samples) vae中的decode部分->
= z=1./scale_factor*z->
= first_stage_model.decode(z)->
== z = post_quant_conv(z)->
== dec=decoder(z)->
x_samples=(einops.rearrange(x_samples,'b c h w -> b h w c')*127.5+127.5)
.cpu().numpy().clip(0,255).astype(np/unint8)->
results

要分析下controlnet的yaml文件,在params中分成了4个部分,分别是control_stage_config、unnet_config、first_stage_config、cond_stage_config。其中control_stage_config对应的是13层的controlnet,unet_config对应的是diffusion model,first_stage_config对应的是vae中的decode部分。

因此当control=None时,就是webui中的sd1.5/2.1。

这篇关于controlnet前向代码解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/833143

相关文章

全面解析Golang 中的 Gorilla CORS 中间件正确用法

《全面解析Golang中的GorillaCORS中间件正确用法》Golang中使用gorilla/mux路由器配合rs/cors中间件库可以优雅地解决这个问题,然而,很多人刚开始使用时会遇到配... 目录如何让 golang 中的 Gorilla CORS 中间件正确工作一、基础依赖二、错误用法(很多人一开

Mysql中设计数据表的过程解析

《Mysql中设计数据表的过程解析》数据库约束通过NOTNULL、UNIQUE、DEFAULT、主键和外键等规则保障数据完整性,自动校验数据,减少人工错误,提升数据一致性和业务逻辑严谨性,本文介绍My... 目录1.引言2.NOT NULL——制定某列不可以存储NULL值2.UNIQUE——保证某一列的每一

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

MySQL CTE (Common Table Expressions)示例全解析

《MySQLCTE(CommonTableExpressions)示例全解析》MySQL8.0引入CTE,支持递归查询,可创建临时命名结果集,提升复杂查询的可读性与维护性,适用于层次结构数据处... 目录基本语法CTE 主要特点非递归 CTE简单 CTE 示例多 CTE 示例递归 CTE基本递归 CTE 结

Spring Boot 3.x 中 WebClient 示例详解析

《SpringBoot3.x中WebClient示例详解析》SpringBoot3.x中WebClient是响应式HTTP客户端,替代RestTemplate,支持异步非阻塞请求,涵盖GET... 目录Spring Boot 3.x 中 WebClient 全面详解及示例1. WebClient 简介2.

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

C#解析JSON数据全攻略指南

《C#解析JSON数据全攻略指南》这篇文章主要为大家详细介绍了使用C#解析JSON数据全攻略指南,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、为什么jsON是C#开发必修课?二、四步搞定网络JSON数据1. 获取数据 - HttpClient最佳实践2. 动态解析 - 快速

Spring Boot3.0新特性全面解析与应用实战

《SpringBoot3.0新特性全面解析与应用实战》SpringBoot3.0作为Spring生态系统的一个重要里程碑,带来了众多令人兴奋的新特性和改进,本文将深入解析SpringBoot3.0的... 目录核心变化概览Java版本要求提升迁移至Jakarta EE重要新特性详解1. Native Ima

Python实现MQTT通信的示例代码

《Python实现MQTT通信的示例代码》本文主要介绍了Python实现MQTT通信的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 安装paho-mqtt库‌2. 搭建MQTT代理服务器(Broker)‌‌3. pytho

spring中的@MapperScan注解属性解析

《spring中的@MapperScan注解属性解析》@MapperScan是Spring集成MyBatis时自动扫描Mapper接口的注解,简化配置并支持多数据源,通过属性控制扫描路径和过滤条件,利... 目录一、核心功能与作用二、注解属性解析三、底层实现原理四、使用场景与最佳实践五、注意事项与常见问题六