吴恩达机器学习-可选实验室:简单神经网络(Simple Neural Network)

本文主要是介绍吴恩达机器学习-可选实验室:简单神经网络(Simple Neural Network),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这个实验室里,我们将使用Numpy构建一个小型神经网络。它将与您在Tensorflow中实现的“咖啡烘焙”网络相同。在这里插入图片描述

import numpy as np
import matplotlib.pyplot as plt
plt.style.use('./deeplearning.mplstyle')
import tensorflow as tf
from lab_utils_common import dlc, sigmoid
from lab_coffee_utils import load_coffee_data, plt_roast, plt_prob, plt_layer, plt_network, plt_output_unit
import logging
logging.getLogger("tensorflow").setLevel(logging.ERROR)
tf.autograph.set_verbosity(0)

数据集
这是与前一个实验室相同的数据集。

X,Y = load_coffee_data();
print(X.shape, Y.shape)

在这里插入图片描述
让我们在下面绘制咖啡烘焙数据。这两个功能是以摄氏度为单位的温度和以分钟为单位的持续时间。在家烤咖啡建议时间最好保持在12到15分钟之间,而温度应该在175到260摄氏度之间。当然,随着温度的升高,持续时间应该会缩短。

plt_roast(X,Y)

在这里插入图片描述
标准化数据
为了与之前的实验室相匹配,我们将对数据进行规范化。请参考该实验室了解更多详细信息

print(f"Temperature Max, Min pre normalization: {np.max(X[:,0]):0.2f}, {np.min(X[:,0]):0.2f}")
print(f"Duration    Max, Min pre normalization: {np.max(X[:,1]):0.2f}, {np.min(X[:,1]):0.2f}")
norm_l = tf.keras.layers.Normalization(axis=-1)
norm_l.adapt(X)  # learns mean, variance
Xn = norm_l(X)
print(f"Temperature Max, Min post normalization: {np.max(Xn[:,0]):0.2f}, {np.min(Xn[:,0]):0.2f}")
print(f"Duration    Max, Min post normalization: {np.max(Xn[:,1]):0.2f}, {np.min(Xn[:,1]):0.2f}")

在这里插入图片描述
上面的这部分跟上一篇文章一样
Numpy模型(Numpy中的正向道具)
在这里插入图片描述

让我们构建讲座中描述的“咖啡烘焙网络”。有两层Sigmoid激活。

如讲座中所述,可以使用NumPy构建自己的密集层。然后可以利用这一点来构建多层神经网络。
在这里插入图片描述
在第一个可选实验室中,您在NumPy和Tensorflow中构建了一个神经元,并注意到它们的相似性。一个层只包含多个神经元/单元。如讲座中所述,可以使用for循环访问层中的每个单元(j),并对该单元(W[:,j])执行权重的点积,并对单元(b[j])的偏差求和以形成z。然后可以将激活函数g(z)应用于该结果。让我们在下面尝试构建一个“密集层”子程序。
👇my_dense函数计算每一层的输出值

def my_dense(a_in, W, b, g):"""Computes dense layerArgs:a_in (ndarray (n, )) : Data, 1 example W    (ndarray (n,j)) : Weight matrix, n features per unit, j unitsb    (ndarray (j, )) : bias vector, j units  g    activation function (e.g. sigmoid, relu..)Returnsa_out (ndarray (j,))  : j units|"""units = W.shape[1]a_out = np.zeros(units)for j in range(units):               w = W[:,j]                                    z = np.dot(w, a_in) + b[j]         a_out[j] = g(z)               return(a_out)

👇下面的单元利用上面的my_dense子程序构建了一个两层神经网络。返回神经网络最终输出值。

def my_sequential(x, W1, b1, W2, b2):a1 = my_dense(x,  W1, b1, sigmoid)a2 = my_dense(a1, W2, b2, sigmoid)return(a2)

我们可以在Tensorflow中复制以前实验室中训练过的权重和偏差。

W1_tmp = np.array( [[-8.93,  0.29, 12.9 ], [-0.1,  -7.32, 10.81]] )
b1_tmp = np.array( [-9.82, -9.28,  0.96] )
W2_tmp = np.array( [[-31.18], [-27.59], [-32.56]] )
b2_tmp = np.array( [15.41] )

预测
在这里插入图片描述
一旦你有了一个经过训练的模型,你就可以用它来进行预测。回想一下,我们模型的输出是一个概率。在这种情况下,烤得好的概率。要做出决定,必须将概率应用于阈值。在这种情况下,我们将使用0.5。

让我们从编写一个类似于Tensorflow的model.product()的例程开始。这需要一个矩阵𝑋与所有𝑚行中的示例,并通过运行模型进行预测。
my_sequential()是对一个输入进行预测,👇my_predict()是对所有的X进行预测

def my_predict(X, W1, b1, W2, b2):m = X.shape[0]p = np.zeros((m,1))for i in range(m):p[i,0] = my_sequential(X[i], W1, b1, W2, b2)return(p)

我们可以在两个例子中尝试这个例程:
👇调用函数

X_tst = np.array([[200,13.9],  # postive example[200,17]])   # negative example
X_tstn = norm_l(X_tst)  # remember to normalize
predictions = my_predict(X_tstn, W1_tmp, b1_tmp, W2_tmp, b2_tmp)

为了将概率转换为决策,我们应用了一个阈值:

yhat = np.zeros_like(predictions)
for i in range(len(predictions)):if predictions[i] >= 0.5:yhat[i] = 1else:yhat[i] = 0
print(f"decisions = \n{yhat}")

在这里插入图片描述
这可以更简洁地完成:

yhat = (predictions >= 0.5).astype(int)
print(f"decisions = \n{yhat}")

在这里插入图片描述
网络功能
此图显示了整个网络的操作,与之前实验室的Tensorflow结果相同。左图是由蓝色阴影表示的最终层的原始输出。这覆盖在由X和O表示的训练数据上。
右图是在决策阈值之后网络的输出。这里的X和O对应于网络做出的决策。

netf= lambda x : my_predict(norm_l(x),W1_tmp, b1_tmp, W2_tmp, b2_tmp)
plt_network(X,Y,netf)

在这里插入图片描述
祝贺
您已经在NumPy中构建了一个小型神经网络。希望这个实验室揭示了构成神经网络一层的相当简单和熟悉的功能。

这篇关于吴恩达机器学习-可选实验室:简单神经网络(Simple Neural Network)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/832627

相关文章

基于Python实现一个简单的题库与在线考试系统

《基于Python实现一个简单的题库与在线考试系统》在当今信息化教育时代,在线学习与考试系统已成为教育技术领域的重要组成部分,本文就来介绍一下如何使用Python和PyQt5框架开发一个名为白泽题库系... 目录概述功能特点界面展示系统架构设计类结构图Excel题库填写格式模板题库题目填写格式表核心数据结构

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

C/C++ chrono简单使用场景示例详解

《C/C++chrono简单使用场景示例详解》:本文主要介绍C/C++chrono简单使用场景示例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友... 目录chrono使用场景举例1 输出格式化字符串chrono使用场景China编程举例1 输出格式化字符串示

windows和Linux安装Jmeter与简单使用方式

《windows和Linux安装Jmeter与简单使用方式》:本文主要介绍windows和Linux安装Jmeter与简单使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录Windows和linux安装Jmeter与简单使用一、下载安装包二、JDK安装1.windows设

重新对Java的类加载器的学习方式

《重新对Java的类加载器的学习方式》:本文主要介绍重新对Java的类加载器的学习方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、介绍1.1、简介1.2、符号引用和直接引用1、符号引用2、直接引用3、符号转直接的过程2、加载流程3、类加载的分类3.1、显示

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

使用Python开发一个简单的本地图片服务器

《使用Python开发一个简单的本地图片服务器》本文介绍了如何结合wxPython构建的图形用户界面GUI和Python内建的Web服务器功能,在本地网络中搭建一个私人的,即开即用的网页相册,文中的示... 目录项目目标核心技术栈代码深度解析完整代码工作流程主要功能与优势潜在改进与思考运行结果总结你是否曾经

Mysql表的简单操作(基本技能)

《Mysql表的简单操作(基本技能)》在数据库中,表的操作主要包括表的创建、查看、修改、删除等,了解如何操作这些表是数据库管理和开发的基本技能,本文给大家介绍Mysql表的简单操作,感兴趣的朋友一起看... 目录3.1 创建表 3.2 查看表结构3.3 修改表3.4 实践案例:修改表在数据库中,表的操作主要

springboot简单集成Security配置的教程

《springboot简单集成Security配置的教程》:本文主要介绍springboot简单集成Security配置的教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录集成Security安全框架引入依赖编写配置类WebSecurityConfig(自定义资源权限规则