【机器学习】机器学习实验方法与原则(统计有效性检验详解)

2024-03-21 11:04

本文主要是介绍【机器学习】机器学习实验方法与原则(统计有效性检验详解),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

统计有效性检验

假设的评估检验:问题1

效果估计
        • 给定一个假设 在有限量数据 上的准确率
        • 该准确率是否能准确估计 在其它未见数据上 的效果?

假设的评估检验:问题2 

h 1 在数据的一个样本集上表现优于 h 2
h 1 总体 上更好的概率有多大?

抽样理论基础 

二项分布 (Binomial Distribution) 

二项分布的应用场景 

两个可能的输出 ( 成功 / 失败 ) ( Y =0 Y =1)
每次尝试成功的概率相等   Pr ( Y = 1) = p , 其中 p 是一个常数
        • n 次独立尝试
        • 随机变量 Y 1 ,…, Y n
        • iid (independent identically distribution ,独立同分布 )
R : 随机变量 , n 次尝试中 Y i = 1 的次数 ,
Pr(R = r ) ~ 二项分布
平均 ( 期望值 ): E [ R ], µ
        • 二项分布 : µ = np

估计假设准确率 – Q1.1解答 

估计的两个重要性质 

估计 偏差 (Bias)
        • 如果 S 是训练集, errorS ( h ) 是有偏差的(偏乐观),
        bias ≡ E[ error S ( h ) ] - error D ( h )
        • 对于无偏估计( bias =0), h S 必须独立不相关地产生
        → 不要在训练集上测试!
估计 方差 (Varias)
        • 即使是 S 的无偏估计, error S ( h ) 可能仍然和 error D ( h ) 不同
                • E.g. 之前的例子 (3.2% vs. 6.5%)
        • 需要选择 无偏 的且有 最小方差 的估计

估计假设准确率 – Q1.2解答 

准确率的估计可能包含多少错误?
( error S ( h ) error D ( h ) 的估计有多好 ?)
抽样理论 : confidence interval ( 置信区间 )
定义 :
        • 参数 p N % 置信区间是一个以 N % 的概率包含 p 的区间 , N % : 置信度
        ✓ 90.0% 的置信度 ,年龄: [12, 24]
        ✓ 99.9% 的置信度,年龄: [3, 60]

置信度与置信区间 

如何得到置信区间 ?
        • 坏消息 : 对二项分布来说很难
        • 好消息 : 对正态分布来说很简单
                • 通过正态分布的某个区间
                (面积)来获得

正态分布 & 二项分布 

如果满足以下条件,估计更准确:
        • S 包含 n >= 30 个样本 , h 独立产生,且每个样本独立采样
那么有大约 95% 的概率 𝑒𝑟𝑟𝑜𝑟 𝑆 (ℎ) 落在区间

问题1解答总结  

问题设定 :
        • S : n 随机独立 样本 , 独立于假设 h
        • n >= 30 & h r 个错误
真实错误率 error D 落在以下区间有 N % 置信度 :

推导置信区间的一般方法 

中心极限定理 

简化了求解置信区间的过程
问题设定
        • 独立同分布Independent, identically distributed (iid)
           的随机变量Y1 , .. , Y n ,
        • 未知分布 , 有均值 μ 和有限方差 σ 2
        • 估计均值:

样本均值 的分布 是已知的 , 即使 Y i 的分布是未知的
可以用来确定的 Y i 均值方差
  提供了估计的基础
        估计量的分布
        一些样本的均值

 假设间的差异

在样本集合 S 1 ( n 1 个随机样本 ) 上测试 h 1 , S 2 ( n 2 ) 上测试 h 2
• 选择要估计的参数
选择估计量
                • 无偏的

* 证明 : http://en.wikipedia.org/wiki/Sum_of_normally_distributed_random_variables

在样本集合 S 1 ( n 1 个随机样本 ) 上测试 h 1 , S 2 ( n 2 ) 上测试 h 2
• 选择要估计的参数
选择估计量
                • 无偏的

确定估计量所服从的正态分布

确定区间 ( L , U ) 满足 N % 的概率落在区间

假设检验 

统计有效性检验: z检验)举例

统计有效性检验:t检验 

统计有效性检验(总结)

比较算法 A B 的优劣
        • 准确率均值高就一定好? 有随机性
        • A比 B 高多少才能有把握说 A 算法更好? 显著性检验
随机变量的样本个数较多时 ( 一般 >30) z 检验 ( 利用中心极限定理 )
        • 一般用于单次评测,随机变量为 每个测试样本 的对错
随机变量的样本个数较少时 ( 一般 <=30) t 检验
        • 一般用于多次评测如重复实验,随机变量为 每次测试集 上的指标

这篇关于【机器学习】机器学习实验方法与原则(统计有效性检验详解)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/832492

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

MySQL数据库双机热备的配置方法详解

《MySQL数据库双机热备的配置方法详解》在企业级应用中,数据库的高可用性和数据的安全性是至关重要的,MySQL作为最流行的开源关系型数据库管理系统之一,提供了多种方式来实现高可用性,其中双机热备(M... 目录1. 环境准备1.1 安装mysql1.2 配置MySQL1.2.1 主服务器配置1.2.2 从

Linux kill正在执行的后台任务 kill进程组使用详解

《Linuxkill正在执行的后台任务kill进程组使用详解》文章介绍了两个脚本的功能和区别,以及执行这些脚本时遇到的进程管理问题,通过查看进程树、使用`kill`命令和`lsof`命令,分析了子... 目录零. 用到的命令一. 待执行的脚本二. 执行含子进程的脚本,并kill2.1 进程查看2.2 遇到的

MyBatis常用XML语法详解

《MyBatis常用XML语法详解》文章介绍了MyBatis常用XML语法,包括结果映射、查询语句、插入语句、更新语句、删除语句、动态SQL标签以及ehcache.xml文件的使用,感兴趣的朋友跟随小... 目录1、定义结果映射2、查询语句3、插入语句4、更新语句5、删除语句6、动态 SQL 标签7、ehc

详解SpringBoot+Ehcache使用示例

《详解SpringBoot+Ehcache使用示例》本文介绍了SpringBoot中配置Ehcache、自定义get/set方式,并实际使用缓存的过程,文中通过示例代码介绍的非常详细,对大家的学习或者... 目录摘要概念内存与磁盘持久化存储:配置灵活性:编码示例引入依赖:配置ehcache.XML文件:配置

从基础到高级详解Go语言中错误处理的实践指南

《从基础到高级详解Go语言中错误处理的实践指南》Go语言采用了一种独特而明确的错误处理哲学,与其他主流编程语言形成鲜明对比,本文将为大家详细介绍Go语言中错误处理详细方法,希望对大家有所帮助... 目录1 Go 错误处理哲学与核心机制1.1 错误接口设计1.2 错误与异常的区别2 错误创建与检查2.1 基础

k8s按需创建PV和使用PVC详解

《k8s按需创建PV和使用PVC详解》Kubernetes中,PV和PVC用于管理持久存储,StorageClass实现动态PV分配,PVC声明存储需求并绑定PV,通过kubectl验证状态,注意回收... 目录1.按需创建 PV(使用 StorageClass)创建 StorageClass2.创建 PV

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符