pose graph 估计实验和机器学习应用场景

2024-03-21 08:59

本文主要是介绍pose graph 估计实验和机器学习应用场景,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

玩乐:
在这里插入图片描述
用pose graph 估计相机位姿的实验

目前开源的SLAM RGB-D相机方案主要有:
DTAM https://github.com/anuranbaka/OpenDTAM
DVO https://github.com/tum-vision/dvo_slam
RTAB-MAP https://github.com/introlab/rtabmap
RGBD-SLAM-V2 https://github.com/felixendres/rgbdslam_v2
Elastic Fusion https://github.com/mp3guy/ElasticFusion
由于年代都比较久远,下了一个RTAB-MAP的源码不会修改到当前版本,就去YouTube看了下视频,神秘代码如下:
https://www.youtube.com/watch?v=71eRxTc1DaU&feature=youtu.be
2017年用联想手机扫描产生三维重建的图形,虽然比较粗糙,但是对于手机来说已经足够轻量级

看完了十四讲,也拟定了方向,基于语义分割(机器学习)的室内场景重建
在这里插入图片描述

语义重建的一些实验结果,语义分割其实现在已经到了一个高峰期,强化学习等手段层出不穷
传统非机器学习做法是构建物品数据库,直接将观测数据与数据库的样本进行比较[1,2 ]
【1】R. F. Salas-Moreno, R. A. Newcombe, H. Strasdat, P. H. J. Kelly, and A. J. Davison,
“Slam++: Simultaneous localisation and mapping at the level of objects,” 2013 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1352–9, 2013.
【2】R. F. Salas-Moreno, B. Glocken, P. H. Kelly, and A. J. Davison, “Dense planar slam,” inMixed and Augmented Reality (ISMAR), 2014 IEEE International Symposium on, pp. 157–164, IEEE, 2014.
尝试去构建语义地图[3, 4, 5, 6]
【3】A. Anand, H. S. Koppula, T. Joachims, and A. Saxena, “Contextually guided semantic la-beling and search for three-dimensional point clouds,” The International Journal of Robotics Research, p. 0278364912461538, 2012.
【4】J. Stückler, N. Biresev, and S. Behnke, “Semantic mapping using object-class segmentation of rgb-d images,” in 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3005–3010, IEEE, 2012.
【5】I. Kostavelis and A. Gasteratos, “Learning spatially semantic representations for cognitive robot navigation,” Robotics and Autonomous Systems, vol. 61, no. 12, pp. 1460–1475, 2013.
【6】C. Couprie, C. Farabet, L. Najman, and Y. LeCun, “Indoor semantic segmentation using depth information,” arXiv preprint arXiv:1301.3572, 2013.
现代由于机器学习的发展,开始使用神经网络,深度学习强化学习的方法去对图像进行准确的识别,检测和分割[144, 145, 146, 147, 148, 149]
【7】 J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale
hierarchical image database,” in CVPR09, 2009.
【8】 A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural networks,” in Advances in neural information processing systems, pp. 1097–1105, 2012.
【9】 K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” arXiv preprint arXiv:1512.03385, 2015.
【10】S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object detection with region proposal networks,” in Advances in neural information processing systems, pp. 91–99, 2015.
【11】J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic segmen-
tation,” arXiv preprint arXiv:1411.4038, 2014.
甚至构建地图本身的位姿估计和回环检测[13, 14, 15]
【13】 K. Konda and R. Memisevic, “Learning visual odometry with a convolutional network,” in International Conference on Computer Vision Theory and Applications, 2015.
【14】 A. Kendall, M. Grimes, and R. Cipolla, “Posenet: A convolutional network for real-time 6-dof camera relocalization,” in Proceedings of the IEEE International Conference on Computer Vision, pp. 2938–2946, 2015.
【15】 Y. Hou, H. Zhang, and S. Zhou, “Convolutional neural network-based image representation for visual loop closure detection,” arXiv preprint arXiv:1504.05241, 2015.

这篇关于pose graph 估计实验和机器学习应用场景的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/832280

相关文章

Java Spring 中 @PostConstruct 注解使用原理及常见场景

《JavaSpring中@PostConstruct注解使用原理及常见场景》在JavaSpring中,@PostConstruct注解是一个非常实用的功能,它允许开发者在Spring容器完全初... 目录一、@PostConstruct 注解概述二、@PostConstruct 注解的基本使用2.1 基本代

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

C语言中位操作的实际应用举例

《C语言中位操作的实际应用举例》:本文主要介绍C语言中位操作的实际应用,总结了位操作的使用场景,并指出了需要注意的问题,如可读性、平台依赖性和溢出风险,文中通过代码介绍的非常详细,需要的朋友可以参... 目录1. 嵌入式系统与硬件寄存器操作2. 网络协议解析3. 图像处理与颜色编码4. 高效处理布尔标志集合

Java中的Lambda表达式及其应用小结

《Java中的Lambda表达式及其应用小结》Java中的Lambda表达式是一项极具创新性的特性,它使得Java代码更加简洁和高效,尤其是在集合操作和并行处理方面,:本文主要介绍Java中的La... 目录前言1. 什么是Lambda表达式?2. Lambda表达式的基本语法例子1:最简单的Lambda表

Python结合PyWebView库打造跨平台桌面应用

《Python结合PyWebView库打造跨平台桌面应用》随着Web技术的发展,将HTML/CSS/JavaScript与Python结合构建桌面应用成为可能,本文将系统讲解如何使用PyWebView... 目录一、技术原理与优势分析1.1 架构原理1.2 核心优势二、开发环境搭建2.1 安装依赖2.2 验

Java字符串操作技巧之语法、示例与应用场景分析

《Java字符串操作技巧之语法、示例与应用场景分析》在Java算法题和日常开发中,字符串处理是必备的核心技能,本文全面梳理Java中字符串的常用操作语法,结合代码示例、应用场景和避坑指南,可快速掌握字... 目录引言1. 基础操作1.1 创建字符串1.2 获取长度1.3 访问字符2. 字符串处理2.1 子字

SpringShell命令行之交互式Shell应用开发方式

《SpringShell命令行之交互式Shell应用开发方式》本文将深入探讨SpringShell的核心特性、实现方式及应用场景,帮助开发者掌握这一强大工具,具有很好的参考价值,希望对大家有所帮助,如... 目录引言一、Spring Shell概述二、创建命令类三、命令参数处理四、命令分组与帮助系统五、自定

SpringBoot应用中出现的Full GC问题的场景与解决

《SpringBoot应用中出现的FullGC问题的场景与解决》这篇文章主要为大家详细介绍了SpringBoot应用中出现的FullGC问题的场景与解决方法,文中的示例代码讲解详细,感兴趣的小伙伴可... 目录Full GC的原理与触发条件原理触发条件对Spring Boot应用的影响示例代码优化建议结论F

MySQL 分区与分库分表策略应用小结

《MySQL分区与分库分表策略应用小结》在大数据量、复杂查询和高并发的应用场景下,单一数据库往往难以满足性能和扩展性的要求,本文将详细介绍这两种策略的基本概念、实现方法及优缺点,并通过实际案例展示如... 目录mysql 分区与分库分表策略1. 数据库水平拆分的背景2. MySQL 分区策略2.1 分区概念

SpringBoot条件注解核心作用与使用场景详解

《SpringBoot条件注解核心作用与使用场景详解》SpringBoot的条件注解为开发者提供了强大的动态配置能力,理解其原理和适用场景是构建灵活、可扩展应用的关键,本文将系统梳理所有常用的条件注... 目录引言一、条件注解的核心机制二、SpringBoot内置条件注解详解1、@ConditionalOn