数学建模(熵权法 python代码 例子)

2024-03-21 08:04

本文主要是介绍数学建模(熵权法 python代码 例子),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

介绍: 

模板:

例子:择偶

极小型指标转化为极大型(正向化):

中间型指标转为极大型(正向化):

区间型指标转为极大型(正向化):

标准化处理:

公式:

熵权:

公式:

​​​完整代码:

结果:

介绍: 

熵权法是一种多属性决策方法,用于确定各个属性在决策中的重要程度。该方法的核心思想是通过计算属性的熵值,来评估属性的信息量和不确定性,进而确定属性的权重。

熵是信息论中的概念,表示一个随机变量的不确定性。在决策中,一个属性的熵越大,说明该属性对决策的贡献越大,因为它包含了更多的信息。熵权法通过计算属性的熵,然后将每个属性的熵除以总的熵,得到每个属性的权重。

具体步骤如下:

  1. 收集决策所涉及的属性数据。
  2. 计算每个属性的熵值,使用熵的计算公式:熵 = -Σ(p*log2(p)),其中p表示属性的概率。
  3. 计算所有属性的熵之和,得到总的熵。
  4. 计算每个属性的权重,使用该属性的熵除以总的熵。
  5. 最后可以根据属性的权重,进行决策或排序。

熵权法在多属性决策中具有一定的优势,能够考虑到不同属性的权重,提高决策的准确性和可靠性。但是,在实际应用中,需要注意属性数据的准确性和合理性,以及熵的计算方法的选择等问题。

 模板:

import numpy as np# 定义计算熵的函数
def entropy(data):# 计算每个属性的概率prob = np.array(data) / np.sum(data)# 计算熵entropy = -np.sum(prob * np.log2(prob))return entropy# 定义熵权法函数
def entropy_weight(data):# 计算每个属性的熵entropies = [entropy(column) for column in data.T]# 计算总的熵total_entropy = np.sum(entropies)# 计算每个属性的权重weights = [entropy / total_entropy for entropy in entropies]return weights# 示例数据
data = np.array([[10, 20, 30, 40], [40, 30, 20, 10]])# 计算权重
weights = entropy_weight(data)
print("属性权重:", weights)

例子:择偶

 极小型指标转化为极大型(正向化):

   # 公式:max-x if ('Negative' in name) == True:max0 = data_nor[columns_name[i + 1]].max()#取最大值data_nor[columns_name[i + 1]] = (max0 - data_nor[columns_name[i + 1]])  # 正向化# print(data_nor[columns_name[i+1]])

 中间型指标转为极大型(正向化):

 # 中间型指标正向化 公式:M=max{|xi-best|}  xi=1-|xi-best|/Mif ('Moderate' in name) == True:print("输入最佳值:")max = data_nor[columns_name[i + 1]].max()min = data_nor[columns_name[i + 1]].min()best=input()M=0for j in data_nor[columns_name[i + 1]]:if(M<abs(j-int(best))):M=(abs(j-int(best)))data_nor[columns_name[i + 1]]=1-(abs(data_nor[columns_name[i + 1]]-int(best))/M)#print(data_nor[columns_name[i + 1]])

 区间型指标转为极大型(正向化):

# 区间型指标正向化if('Section' in name)==True:print()print("输入区间:")a=input()b=input()a=int(a)b=int(b)max = data_nor[columns_name[i + 1]].max()min= data_nor[columns_name[i + 1]].min()if(a-min>max-b):M=a-minelse:M=max-b#print(data_nor[columns_name[i + 1]][0])cnt=0for j in data_nor[columns_name[i + 1]]:if(j<int(a)):data_nor[columns_name[i + 1]][cnt]=1-(a-j)/Melif (int(a)<= j <=int(b)):data_nor[columns_name[i + 1]][cnt]=1elif (j>b):data_nor[columns_name[i + 1]][cnt]=1-(j-b)/M#print(data_nor[columns_name[i + 1]][cnt])cnt+=1#print(data_nor[columns_name[i + 1]])'''公式:
M = max{a-min{xi},max{xi}-b}  xi<a,则xi=1-(a-xi)/M; a<=xi<=b,则xi=1; xi>b,则1-(xi-b)/M
'''

标准化处理:

公式:

def normalization(data_nor):data_nors = data_nor.valuesdata_nors = np.delete(data_nors, 0, axis=1)#去掉第一行squere_A = data_nors * data_nors#矩阵相乘# print(squere_A)sum_A = np.sum(squere_A, axis=0)#按列求和sum_A = sum_A.astype(float)stand_A = np.sqrt(sum_A)#平方根columns_name = data_nor.columns.valuescnt=0for i in columns_name[1:]:#print(data_nor[i])data_nor[i]=data_nor[i]/stand_A[cnt]cnt+=1#print(data_nor)return data_nor

熵权:

公式:

# 定义计算熵权方法
def entropy_weight(data_nor):columns_name = data_nor.columns.valuesn = data_nor.shape[0]E = []for i in columns_name[1:]:# 计算信息熵# print(i)data_nor[i] = data_nor[i] / sum(data_nor[i])data_nor[i] = data_nor[i] * np.log(data_nor[i])data_nor[i] = data_nor[i].where(data_nor[i].notnull(), 0)# print(data_nor[i])Ei = (-1) / (np.log(n)) * sum(data_nor[i])E.append(Ei)# print(E)# 计算权重W = []for i in E:wi = (1 - i) / ((len(columns_name) - 1) - sum(E))W.append(wi)# print(W)return W

 ​​​​完整代码:

#coding=gbk
import pandas as pd
import numpy as np
import re
import warnings# 定义文件读取方法
def read_data(file):file_path = fileraw_data = pd.read_excel(file_path, header=0)# print(raw_data)return raw_data# 定义数据正向化
def data_normalization(data):data_nor = data.copy()columns_name = data_nor.columns.values#print(columns_name)for i in range((len(columns_name) - 1)):name = columns_name[i + 1]print("输入这一类数据类型(Positive、Negative、Moderate、Section:)")name=input()# 极小型指标正向化if ('Negative' in name) == True:max0 = data_nor[columns_name[i + 1]].max()#取最大值data_nor[columns_name[i + 1]] = (max0 - data_nor[columns_name[i + 1]])  # 正向化# print(data_nor[columns_name[i+1]])# 中间型指标正向化if ('Moderate' in name) == True:print("输入最佳值:")max = data_nor[columns_name[i + 1]].max()#取最大值min = data_nor[columns_name[i + 1]].min()#取最小值best=input()M=0for j in data_nor[columns_name[i + 1]]:if(M<abs(j-int(best))):M=(abs(j-int(best)))data_nor[columns_name[i + 1]]=1-(abs(data_nor[columns_name[i + 1]]-int(best))/M)#print(data_nor[columns_name[i + 1]])# 区间型指标正向化if('Section' in name)==True:print("输入区间:")a=input()b=input()a=int(a)b=int(b)max = data_nor[columns_name[i + 1]].max()min= data_nor[columns_name[i + 1]].min()if(a-min>max-b):M=a-minelse:M=max-b#print(data_nor[columns_name[i + 1]][0])cnt=0for j in data_nor[columns_name[i + 1]]:if(j<int(a)):data_nor[columns_name[i + 1]][cnt]=1-(a-j)/Melif (int(a)<= j <=int(b)):data_nor[columns_name[i + 1]][cnt]=1elif (j>b):data_nor[columns_name[i + 1]][cnt]=1-(j-b)/Mcnt+=1#print(data_nor[columns_name[i + 1]])# print(data_nor)return data_nordef normalization(data_nor):data_nors = data_nor.valuesdata_nors = np.delete(data_nors, 0, axis=1)squere_A = data_nors * data_nors#矩阵相乘# print(squere_A)sum_A = np.sum(squere_A, axis=0)#按列求和sum_A = sum_A.astype(float)stand_A = np.sqrt(sum_A)#开平方columns_name = data_nor.columns.valuescnt=0for i in columns_name[1:]:data_nor[i]=data_nor[i]/stand_A[cnt]#每个元素除以相对应的平方根cnt+=1#print(data_nor)return data_nor# 定义计算熵权方法
def entropy_weight(data_nor):columns_name = data_nor.columns.valuesn = data_nor.shape[0]E = []for i in columns_name[1:]:# 计算信息熵# print(i)data_nor[i] = data_nor[i] / sum(data_nor[i])data_nor[i] = data_nor[i] * np.log(data_nor[i])data_nor[i] = data_nor[i].where(data_nor[i].notnull(), 0)# print(data_nor[i])Ei = (-1) / (np.log(n)) * sum(data_nor[i])E.append(Ei)# print(E)# 计算权重W = []for i in E:wi = (1 - i) / ((len(columns_name) - 1) - sum(E))W.append(wi)# print(W)return W# 计算得分
def entropy_score(data, w):data_s = data.copy()columns_name = data_s.columns.valuesfor i in range((len(columns_name) - 1)):name = columns_name[i + 1]data_s[name] = data_s[name] * w[i]return data_sif __name__ == "__main__":file = 'filepath'  # 声明数据文件地址data = read_data(file)  # 读取数据文件data_nor = data_normalization(data)  # 数据正向化,生成后的数据data_norprint("\n正向化后的数据:")print(data_nor)data_nor=normalization(data_nor)print("\n标准化后的数据:")print(data_nor)W = entropy_weight(data_nor)  # 计算熵权权重data_s = entropy_score(data, W)  # 计算赋权后的得分,使用原数据计算#data_nor_s = entropy_score(data_nor, W)print("\n权值:",W)print("\n赋权后的得分:")print(data_s)#print(data_nor_s)

结果: 

 

这篇关于数学建模(熵权法 python代码 例子)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/832146

相关文章

Python将字库文件打包成可执行文件的常见方法

《Python将字库文件打包成可执行文件的常见方法》在Python打包时,如果你想将字库文件一起打包成一个可执行文件,有几种常见的方法,具体取决于你使用的打包工具,下面就跟随小编一起了解下具体的实现方... 目录使用 PyInstaller基本方法 - 使用 --add-data 参数使用 spec 文件(

Python MCPInspector调试思路详解

《PythonMCPInspector调试思路详解》:本文主要介绍PythonMCPInspector调试思路详解,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋... 目录python-MCPInspector调试1-核心知识点2-思路整理1-核心思路2-核心代码3-参考网址

将图片导入Python的turtle库的详细过程

《将图片导入Python的turtle库的详细过程》在Python编程的世界里,turtle库以其简单易用、图形化交互的特点,深受初学者喜爱,随着项目的复杂度增加,仅仅依靠线条和颜色来绘制图形可能已经... 目录开篇引言正文剖析1. 理解基础:Turtle库的工作原理2. 图片格式与支持3. 实现步骤详解第

Python的pip在命令行无法使用问题的解决方法

《Python的pip在命令行无法使用问题的解决方法》PIP是通用的Python包管理工具,提供了对Python包的查找、下载、安装、卸载、更新等功能,安装诸如Pygame、Pymysql等Pyt... 目录前言一. pip是什么?二. 为什么无法使用?1. 当我们在命令行输入指令并回车时,一般主要是出现以

Python解决雅努斯问题实例方案详解

《Python解决雅努斯问题实例方案详解》:本文主要介绍Python解决雅努斯问题实例方案,雅努斯问题是指AI生成的3D对象在不同视角下出现不一致性的问题,即从不同角度看物体时,物体的形状会出现不... 目录一、雅努斯简介二、雅努斯问题三、示例代码四、解决方案五、完整解决方案一、雅努斯简介雅努斯(Janu

使用Python和SQLAlchemy实现高效的邮件发送系统

《使用Python和SQLAlchemy实现高效的邮件发送系统》在现代Web应用中,邮件通知是不可或缺的功能之一,无论是订单确认、文件处理结果通知,还是系统告警,邮件都是最常用的通信方式之一,本文将详... 目录引言1. 需求分析2. 数据库设计2.1 User 表(存储用户信息)2.2 CustomerO

使用Python实现实时金价监控并自动提醒功能

《使用Python实现实时金价监控并自动提醒功能》在日常投资中,很多朋友喜欢在一些平台买点黄金,低买高卖赚点小差价,但黄金价格实时波动频繁,总是盯着手机太累了,于是我用Python写了一个实时金价监控... 目录工具能干啥?手把手教你用1、先装好这些"食材"2、代码实现讲解1. 用户输入参数2. 设置无头浏

一文教你如何解决Python开发总是import出错的问题

《一文教你如何解决Python开发总是import出错的问题》经常朋友碰到Python开发的过程中import包报错的问题,所以本文将和大家介绍一下可编辑安装(EditableInstall)模式,可... 目录摘要1. 可编辑安装(Editable Install)模式到底在解决什么问题?2. 原理3.

Python+wxPython构建图像编辑器

《Python+wxPython构建图像编辑器》图像编辑应用是学习GUI编程和图像处理的绝佳项目,本教程中,我们将使用wxPython,一个跨平台的PythonGUI工具包,构建一个简单的... 目录引言环境设置创建主窗口加载和显示图像实现绘制工具矩形绘制箭头绘制文字绘制临时绘制处理缩放和旋转缩放旋转保存编

Python 异步编程 asyncio简介及基本用法

《Python异步编程asyncio简介及基本用法》asyncio是Python的一个库,用于编写并发代码,使用协程、任务和Futures来处理I/O密集型和高延迟操作,本文给大家介绍Python... 目录1、asyncio是什么IO密集型任务特征2、怎么用1、基本用法2、关键字 async1、async