图像超分辨的几种方法

2024-03-21 02:10
文章标签 方法 图像 几种 分辨

本文主要是介绍图像超分辨的几种方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

当前看了几种图像超分辨的方法,本篇博客主要介绍 最近邻插值算法、双线性插值算法、双三次插值算法(bicubic interpolation)、SRCNN、TNRD、ESPCN 几种方法。
为了方便归纳,这里借鉴一下其他几个博主的相关总结。。

1.最近邻插值算法、双线性插值算法、双三次插值算法(bicubic interpolation) 请参阅博客 https://blog.csdn.net/nandina179/article/details/85330552

2.SRCNN 方法 请参阅博客 https://blog.csdn.net/Autism_/article/details/79401798

(SRCNN就是对利用双三次插值算法降采样并恢复的图像进行 Conv(9 * 9)+relu——conv(1 * 1)+relu——conv(5*5)的操作,该过程实际上并没有改变输入和输出图像的大小,个人理解就是在双三次插值的后面加了一个三层的网络)

3.TNRD 该方法是以扩散方程(P-M方程)为基础的一种应用于Gaussian image denoising, single image super resolution, JPEG deblocking 的方法。
下面说一下个人的理解。
对于P-M扩散方程:
在这里插入图片描述
主要用于对实现图像的平滑,其具体的来源可以参见博客 https://www.cnblogs.com/voidobject/p/3975545.html
而对于离散的P-M模型可以表示为:
在这里插入图片描述
在TNRD方法中,作者引入了 reaction term 来处理不同的图像处理问题:
在这里插入图片描述
在此基础上,得到了TNRD的扩散模型(diffusion model ):
在这里插入图片描述
该模型可以表示为前馈网络形式:
在这里插入图片描述
However, we can introduce a feedback step to explicitly illustrate the special architecture of our diffusion network that we subtract “something” from the input image. Therefore, our diffusion model can be represented in a more compact way in Figure 2, where one can see that the structure of our CN model is different from conventional feed-forward networks. Due to this feedback step, it can be categorized into recurrent networks .
在这里插入图片描述
在SISR中,We start with the following energy functional:
在这里插入图片描述
以上就是将TNRD应用到SISR中的介绍。也就是说,TNRD以双三次插值为基础,对于每一层网络的双三次插值得到的SR图像进行散度计算求出扩散量(这个词可能不准确),然后在该层网络的SR图像ut-1中减去该扩散量得到下一次网络的输入ut。特别地,u0直接由LR图像f得到。

4.ESPCN ——Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network
可以参阅博客
https://blog.csdn.net/weinidakaishijian/article/details/75577010
以及 https://www.jianshu.com/p/c24c3394cfe3

(ESPCN是一个三层的网络,前两层是卷积层,最后一层是reshape,将第二个卷积层得到的 H * W * Cr2 的图像reshape为 rH * rW * C 的图像,因此最后一层并没有进行非线性变换。)

论文:https://arxiv.org/pdf/1609.05158.pdf
代码:https://github.com/leftthomas/ESPCN

问题: ESPCN中使用的激活函数是tanh,并且证明了其比ReLU函数效果要好,why?

这篇关于图像超分辨的几种方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/831465

相关文章

Java 中的 @SneakyThrows 注解使用方法(简化异常处理的利与弊)

《Java中的@SneakyThrows注解使用方法(简化异常处理的利与弊)》为了简化异常处理,Lombok提供了一个强大的注解@SneakyThrows,本文将详细介绍@SneakyThro... 目录1. @SneakyThrows 简介 1.1 什么是 Lombok?2. @SneakyThrows

判断PyTorch是GPU版还是CPU版的方法小结

《判断PyTorch是GPU版还是CPU版的方法小结》PyTorch作为当前最流行的深度学习框架之一,支持在CPU和GPU(NVIDIACUDA)上运行,所以对于深度学习开发者来说,正确识别PyTor... 目录前言为什么需要区分GPU和CPU版本?性能差异硬件要求如何检查PyTorch版本?方法1:使用命

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Java中的工具类命名方法

《Java中的工具类命名方法》:本文主要介绍Java中的工具类究竟如何命名,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录Java中的工具类究竟如何命名?先来几个例子几种命名方式的比较到底如何命名 ?总结Java中的工具类究竟如何命名?先来几个例子JD

Spring Security自定义身份认证的实现方法

《SpringSecurity自定义身份认证的实现方法》:本文主要介绍SpringSecurity自定义身份认证的实现方法,下面对SpringSecurity的这三种自定义身份认证进行详细讲解,... 目录1.内存身份认证(1)创建配置类(2)验证内存身份认证2.JDBC身份认证(1)数据准备 (2)配置依

python获取网页表格的多种方法汇总

《python获取网页表格的多种方法汇总》我们在网页上看到很多的表格,如果要获取里面的数据或者转化成其他格式,就需要将表格获取下来并进行整理,在Python中,获取网页表格的方法有多种,下面就跟随小编... 目录1. 使用Pandas的read_html2. 使用BeautifulSoup和pandas3.

Spring 中的循环引用问题解决方法

《Spring中的循环引用问题解决方法》:本文主要介绍Spring中的循环引用问题解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录什么是循环引用?循环依赖三级缓存解决循环依赖二级缓存三级缓存本章来聊聊Spring 中的循环引用问题该如何解决。这里聊

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

Pandas统计每行数据中的空值的方法示例

《Pandas统计每行数据中的空值的方法示例》处理缺失数据(NaN值)是一个非常常见的问题,本文主要介绍了Pandas统计每行数据中的空值的方法示例,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是空值?为什么要统计空值?准备工作创建示例数据统计每行空值数量进一步分析www.chinasem.cn处