Transformer的前世今生 day03(Word2Vec、如何使用在下游任务中)

2024-03-20 18:52

本文主要是介绍Transformer的前世今生 day03(Word2Vec、如何使用在下游任务中),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前情回顾

  • 由上一节,我们可以得到:
    • 任何一个独热编码的词都可以通过Q矩阵得到一个词向量,而词向量有两个优点:
      • 可以改变输入的维度(原来是很大的独热编码,但是我们经过一个Q矩阵后,维度就可以控制了)
      • 相似词之间的词向量有了关系
  • 但是,在NNLM(神经网络语言模型的一种)中,词向量是一个副产品,即主要目的并不是生成词向量,而是去预测下一个词是什么,所以它对预测的精度要求很高,模型就会很复杂,也就不容易去计算Q矩阵和词向量
  • 模型图如下:
    在这里插入图片描述
  • 因此提出了一个专门生成词向量的神经网络语言模型----Word2Vec

Word2Vec

  • 主要目的是生成词向量,模型图如下:
    在这里插入图片描述
  • 虽然NNLM和Word2Vec基本一致,不考虑细节,网络架构基本一致
  • 但是由于Word2Vec的主要目的是生成词向量,那么对预测精度的要求可以放低,甚至只要合理,就算有多个结果也可以,因此模型不会很复杂,也就是可以更容易的计算出Q矩阵和词向量
  • 所以对比NNLM,Word2Vec不用预测更准确,只需要可以正常的进行一个反向传播,可以去掉激活函数,加快计算速度,如下:
    在这里插入图片描述
  • Word2Vec的缺点:
    • 词向量不能表示一词多义,如果我们在训练中给某一个词选择了一个词向量,但是在测试中,同样的词可能会有其他意思,那模型仍然不知道这个位置应该填入什么词,如下:
      在这里插入图片描述

CBOW

  • 给出一个词的上下文,预测这个词,如下:
    在这里插入图片描述
  • 由于Q矩阵和词向量的产生在INPUT到PROJECTION的过程中,且CBOW会有更多的Q矩阵和词向量,也就意味着它生成词向量的效率更高,如下:
    在这里插入图片描述

Skip-gram

  • 给出一个词,得到这个词的上下文,如下:
    在这里插入图片描述
  • 相反,在Skip-gram中,我们得到Q矩阵和词向量的效率会低一些
    在这里插入图片描述

如何将词向量使用在下游任务中

  • Word2Vec是预训练模型,而预训练模型分为两种:假设给出任务A和任务B,其中对于任务A我们已经得出了一个良好的模型A,而任务B由于数据集太小或训练太复杂等其他原因,无法解决,即无法得出模型B
    • 我们可以使用模型A,来辅助解决任务B
    • 或者使用模型A,来加快模型B的生成
  • 词向量大多数用在第二种,加快模型B的生成
    在这里插入图片描述
  • 在经典的NLP领域中:在将输入X、Y传入网络后,从W(独热编码,是一种一一对应的表查询,不是预训练)到隐藏层需要经过一个Q矩阵,而这个Q矩阵可以使用Word2Vec预训练好的Q矩阵,并直接得到词向量,然后进行接下来的具体任务
  • 在我们使用Word2Vec的Q矩阵也有两种方式
    • 冻结:不改变Q矩阵
    • 微调:随着任务的改变,在模型的训练过程中,改变Q矩阵
  • 以后的transformer和BERT都是用在预训练这一块,而其他的网络结构是根据任务的不同进行改变的,也就意味着在相同的任务下,我们可以通过改变预训练来找到创新点。

参考文献

  1. 06 Word2Vec模型(第一个专门做词向量的模型,CBOW和Skip-gram)

这篇关于Transformer的前世今生 day03(Word2Vec、如何使用在下游任务中)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/830416

相关文章

Java使用Thumbnailator库实现图片处理与压缩功能

《Java使用Thumbnailator库实现图片处理与压缩功能》Thumbnailator是高性能Java图像处理库,支持缩放、旋转、水印添加、裁剪及格式转换,提供易用API和性能优化,适合Web应... 目录1. 图片处理库Thumbnailator介绍2. 基本和指定大小图片缩放功能2.1 图片缩放的

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

使用IDEA部署Docker应用指南分享

《使用IDEA部署Docker应用指南分享》本文介绍了使用IDEA部署Docker应用的四步流程:创建Dockerfile、配置IDEADocker连接、设置运行调试环境、构建运行镜像,并强调需准备本... 目录一、创建 dockerfile 配置文件二、配置 IDEA 的 Docker 连接三、配置 Do

Android Paging 分页加载库使用实践

《AndroidPaging分页加载库使用实践》AndroidPaging库是Jetpack组件的一部分,它提供了一套完整的解决方案来处理大型数据集的分页加载,本文将深入探讨Paging库... 目录前言一、Paging 库概述二、Paging 3 核心组件1. PagingSource2. Pager3.

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

C++11右值引用与Lambda表达式的使用

《C++11右值引用与Lambda表达式的使用》C++11引入右值引用,实现移动语义提升性能,支持资源转移与完美转发;同时引入Lambda表达式,简化匿名函数定义,通过捕获列表和参数列表灵活处理变量... 目录C++11新特性右值引用和移动语义左值 / 右值常见的左值和右值移动语义移动构造函数移动复制运算符

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

C#中lock关键字的使用小结

《C#中lock关键字的使用小结》在C#中,lock关键字用于确保当一个线程位于给定实例的代码块中时,其他线程无法访问同一实例的该代码块,下面就来介绍一下lock关键字的使用... 目录使用方式工作原理注意事项示例代码为什么不能lock值类型在C#中,lock关键字用于确保当一个线程位于给定实例的代码块中时