使用KNN/SVM进行未知飞行器预测GUI/Qt小白教程

2024-03-20 16:30

本文主要是介绍使用KNN/SVM进行未知飞行器预测GUI/Qt小白教程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

KNN 的全称是 K Nearest Neighbors,意思是 K 个最近的邻居

       KNN算法具体步骤:

(1)计算已知类别数据集中的点与当前点之间的距离;

(2)按照距离递增次序排序;

(3)选取与当前点距离最小的K个点;

(4)确定前K个点所在类别的出现频率;

(5)返回前K个点出现频率最高的类别作为当前点的预测分类。

       在训练分类器时使用交叉验证,其基本思想是将原始数据进行分组,一部分作为训练集,另一部分作为验证集,首先用训练集对分类器进行训练,再利用验证集来测试训练得到的模型,以此来作为评价分类器的性能指标。

       常做K折交叉验证,将数据集分成K份,轮流将其中K-1份做训练,1份做验证,多次的结果的均值作为对算法精度的估计,以求更精确一点。

       距离度量是指算法使用样本间的距离作为样本之间的相似性指标,常用欧氏距离或曼哈顿距离。

       需要用到的第三方库有:pandas、sklearn

       具体实现的步骤有:数据加载、数据预处理(删除重复数据、错误数据、填补空缺值、数据分割、标准化处理)、模型训练(构建模型、模型训练、参数调优)

       在编写代码过程中需要注意的是在读入需要预测的数据之后,也要将其与之前的训练数据一样的标准化。

       可以看一下别人用KNN是怎么做的:

KNN算法——kd-tree、KNN莺尾花分类sklearn实现实例_sklearn kdtree_企鹅家的北极熊的博客-CSDN博客

sklearn实现KNN分类算法_使用sklearn中的knn算法进行分类_睿科知识云的博客-CSDN博客
【机器学习】KNN算法实战项目二:水果分类_如何使用knn实现二分类_百木从森的博客-CSDN博客
SVM即支持向量机(Support Vector Machines
       基于统计学习理论,强调结构风险最小化。其基本思想是:对于一个给定有限数量训练样本的学习任务,通过在原空间或经投影后的高维空间中构造最优分离超平面,将给定的两类训练样本分开,构造分离超平面的依据是 两类样本对分离超平面的最小距离最大化。

       寻找最优的超平面和支持向量时,可以通过非线性映射将原数据变换到更高维空间,在新的高维空间中实现线性可分。这种非线性映射可以通过核函数来实现,常用的核函数包括: 高斯核函数、多项式核函数、S形*核函数。

       需要用到的第三方库有:pandas、sklearn-svm

       具体实现的步骤有:数据加载、数据预处理(删除重复数据、错误数据、填补空缺值、数据分割、标准化处理)、模型训练(创建支持向量机、选择核函数、用fit()方法训练、用score()方法考察训练效果、用predict()方法进行预测)

       编程中,KNN和SVM没什么很大的区别。

Gui软件界面制作与打包:

       建议学习白月黑羽的教程,上链接:白月黑羽

       我的理解是GUI就是要做好信号和槽的连接,其他都是进阶,先做出来,后面都是2.0。

       图形用户界面(Graphical User Interface,简称 GUI,又称图形用户接口)是指采用图形方式显示的计算机操作用户界面。图形用户界面是一种人与计算机通信的界面显示格式,允许用户使用鼠标等输入设备操纵屏幕上的图标或菜单选项,以选择命令、调用文件、启动程序或执行其它一些日常任务。

       这里完成这个任务我所使用的是PyCharm和外部工具QtDesigner,第三方库是PyQt5,先在QtDesigner中将页面设计好,如图3所示,其中包含选择机型的下拉框“请选择要预测的飞机”,会将战机参数在下方显示,再通过下方“请选择使用的预测方法”选择预测方法(KNN/SVM),接着点击开始预测,则会将得到的飞机参数输送给预测算法,并将结果显示在下方的结果展示区“输出预测结果”,包括真实机型和预测机型,在右侧是将不同的飞机型号图片进行插入。

       设计好的界面保存为ui格式的文件“FighterRecognition.ui”,并在python文件中将其调用,语句为:self.ui = uic.loadUi("FighterRecognition.ui")

       这样做的好处是每次修改图形界面后直接生成ui文件,再调用即可,不用担心由ui文件生成py文件后多次修改,迭代方便。

       接着通过编写与图形界面相关联的“槽”与“信号”的代码对信息进行显示、调用和输出。

Python控制台运行结果输出到GUI(PyQt5)_cocajoo的博客-CSDN博客

pyqt5输出内容到界面GUI以及调用子窗口_pyqt5输出信息到界面文本框_Starterman的博客-CSDN博客

       功能:

       通过输入未知飞行器的参数,如:长度、翼展、高度等数据,使用KNN算法或SVM算法进行分类预测,需要提前使用大数据训练,其中训练飞机的类型决定了预测飞机的可能种类,训练的越多,预测结果的种类也会越多,即此程序将输入的飞机归类为已有的最相近的那个飞机。

       训练数据为Mygui文件夹下plane_data.xls表格,测试数据为Mygui文件夹下test_data.xls

       用法:

       双击Mygui\dist\FighterRecognition\FighterRecognition.exe,即可启动程序;左侧为功能及数据显示区域,右侧为图片展示区。

       首先在选择机型选项中选择要预测的未知飞机,则将会把飞机数据显示在对应的数据框中;在下方选择预测的方法,可以选择KNN或SVM两类算法,再点击开始预测,预测结果在左下角显示,会与真实机型对比。

       KNN和SVM算法代码在Mygui文件夹下也有放置。

       更改:

       在Mygui文件夹下FighterRecognition.py文件即为程序源码,Gui界面是使用QtDesigner设计的,在py文件中,调用FighterRecognition.ui文件来实现,更改源码后,可以使用第三方库pyinstaller将程序打包为exe可执行文件。

        

这篇关于使用KNN/SVM进行未知飞行器预测GUI/Qt小白教程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/830051

相关文章

Python pandas库自学超详细教程

《Pythonpandas库自学超详细教程》文章介绍了Pandas库的基本功能、安装方法及核心操作,涵盖数据导入(CSV/Excel等)、数据结构(Series、DataFrame)、数据清洗、转换... 目录一、什么是Pandas库(1)、Pandas 应用(2)、Pandas 功能(3)、数据结构二、安

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

使用IDEA部署Docker应用指南分享

《使用IDEA部署Docker应用指南分享》本文介绍了使用IDEA部署Docker应用的四步流程:创建Dockerfile、配置IDEADocker连接、设置运行调试环境、构建运行镜像,并强调需准备本... 目录一、创建 dockerfile 配置文件二、配置 IDEA 的 Docker 连接三、配置 Do

Android Paging 分页加载库使用实践

《AndroidPaging分页加载库使用实践》AndroidPaging库是Jetpack组件的一部分,它提供了一套完整的解决方案来处理大型数据集的分页加载,本文将深入探讨Paging库... 目录前言一、Paging 库概述二、Paging 3 核心组件1. PagingSource2. Pager3.

Python进行JSON和Excel文件转换处理指南

《Python进行JSON和Excel文件转换处理指南》在数据交换与系统集成中,JSON与Excel是两种极为常见的数据格式,本文将介绍如何使用Python实现将JSON转换为格式化的Excel文件,... 目录将 jsON 导入为格式化 Excel将 Excel 导出为结构化 JSON处理嵌套 JSON:

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

C++11右值引用与Lambda表达式的使用

《C++11右值引用与Lambda表达式的使用》C++11引入右值引用,实现移动语义提升性能,支持资源转移与完美转发;同时引入Lambda表达式,简化匿名函数定义,通过捕获列表和参数列表灵活处理变量... 目录C++11新特性右值引用和移动语义左值 / 右值常见的左值和右值移动语义移动构造函数移动复制运算符

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali