[Offer收割]编程练习赛1 hihocoder 1269 优化延迟 (二分+优先权队列)

本文主要是介绍[Offer收割]编程练习赛1 hihocoder 1269 优化延迟 (二分+优先权队列),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

时间限制:10000ms
单点时限:1000ms
内存限制:256MB

描述

小Ho编写了一个处理数据包的程序。程序的输入是一个包含N个数据包的序列。每个数据包根据其重要程度不同,具有不同的"延迟惩罚值"。序列中的第i个数据包的"延迟惩罚值"是Pi。如果N个数据包按照<Pi1, Pi2, ... PiN>的顺序被处理,那么总延迟惩罚

SP=1*Pi1+2*Pi2+3*Pi3+...+N*PiN(其中i1, i2, ... iN是1, 2, 3, ... N的一个排列)。

小Ho的程序会依次处理每一个数据包,这时N个数据包的总延迟惩罚值SP为

1*P1+2*P2+3*P3+...+i*Pi+...+N*PN。  

小Hi希望可以降低总延迟惩罚值。他的做法是在小Ho的程序中增加一个大小为K的缓冲区。N个数据包在被处理前会依次进入缓冲区。当缓冲区满的时候会将当前缓冲区内"延迟惩罚值"最大的数据包移出缓冲区并进行处理。直到没有新的数据包进入缓冲区时,缓冲区内剩余的数据包会按照"延迟惩罚值"从大到小的顺序被依次移出并进行处理。

例如,当数据包的"延迟惩罚值"依次是<5, 3, 1, 2, 4>,缓冲区大小K=2时,数据包被处理的顺序是:<5, 3, 2, 4, 1>。这时SP=1*5+2*3+3*2+4*4+5*1=38。

现在给定输入的数据包序列,以及一个总延迟惩罚阈值Q。小Hi想知道如果要SP<=Q,缓冲区的大小最小是多少?

输入

Line 1: N Q

Line 2: P1 P2 ... PN

对于50%的数据: 1 <= N <= 1000

对于100%的数据: 1 <= N <= 100000, 0 <= Pi <= 1000, 1 <= Q <= 1013

输出

输出最小的正整数K值能满足SP<=Q。如果没有符合条件的K,输出-1。

样例输入
5 38
5 3 1 2 4
样例输出
2

题目链接: http://hihocoder.com/problemset/problem/1269

题目分析:因为可以发现K越大,SP的值越小,所以可以二分K值,priority_queue模拟过程,判断即可

#include <cstdio>  
#include <cstring>
#include <algorithm>  
#include <queue>  
#define ll long long  
using namespace std;  
int const MAX = 100005;  
int n;  
ll p[MAX], pp[MAX], Q, sum;  bool judge(int x)  
{  priority_queue <ll> q;  int i = 1;  ll cnt = 1;  sum = 0;  while(i <= n)  {  while(i <= n && (int) q.size() != x)  q.push(p[i ++]);  sum += cnt * q.top();  q.pop();  cnt ++;  if(i == n + 1)  {  while(!q.empty())  {  sum += cnt * q.top();  q.pop();  cnt ++;  }  }  }  return sum <= Q;  
}  int main()  
{  ll tmp = 0;scanf("%d %lld", &n, &Q);  for(int i = 1; i <= n; i++)  scanf("%lld", &p[i]);     memcpy(pp, p, sizeof(p));sort(pp + 1, pp + n + 1);for(int i = 1; i <= n; i++)  tmp += pp[i] * (n - i + 1);if(tmp > Q){printf("-1\n");return 0;}int l = 1, r = MAX, mid, ans;while(l <= r)  {  mid = (l + r) >> 1;  if(judge(mid))  {ans = mid;r = mid - 1;}else  l = mid + 1;}  printf("%d\n", ans);  
} 





这篇关于[Offer收割]编程练习赛1 hihocoder 1269 优化延迟 (二分+优先权队列)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/829613

相关文章

RabbitMQ 延时队列插件安装与使用示例详解(基于 Delayed Message Plugin)

《RabbitMQ延时队列插件安装与使用示例详解(基于DelayedMessagePlugin)》本文详解RabbitMQ通过安装rabbitmq_delayed_message_exchan... 目录 一、什么是 RabbitMQ 延时队列? 二、安装前准备✅ RabbitMQ 环境要求 三、安装延时队

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

Python实战之SEO优化自动化工具开发指南

《Python实战之SEO优化自动化工具开发指南》在数字化营销时代,搜索引擎优化(SEO)已成为网站获取流量的重要手段,本文将带您使用Python开发一套完整的SEO自动化工具,需要的可以了解下... 目录前言项目概述技术栈选择核心模块实现1. 关键词研究模块2. 网站技术seo检测模块3. 内容优化分析模

Java实现复杂查询优化的7个技巧小结

《Java实现复杂查询优化的7个技巧小结》在Java项目中,复杂查询是开发者面临的“硬骨头”,本文将通过7个实战技巧,结合代码示例和性能对比,手把手教你如何让复杂查询变得优雅,大家可以根据需求进行选择... 目录一、复杂查询的痛点:为何你的代码“又臭又长”1.1冗余变量与中间状态1.2重复查询与性能陷阱1.

Python内存优化的实战技巧分享

《Python内存优化的实战技巧分享》Python作为一门解释型语言,虽然在开发效率上有着显著优势,但在执行效率方面往往被诟病,然而,通过合理的内存优化策略,我们可以让Python程序的运行速度提升3... 目录前言python内存管理机制引用计数机制垃圾回收机制内存泄漏的常见原因1. 循环引用2. 全局变

Python异步编程之await与asyncio基本用法详解

《Python异步编程之await与asyncio基本用法详解》在Python中,await和asyncio是异步编程的核心工具,用于高效处理I/O密集型任务(如网络请求、文件读写、数据库操作等),接... 目录一、核心概念二、使用场景三、基本用法1. 定义协程2. 运行协程3. 并发执行多个任务四、关键

AOP编程的基本概念与idea编辑器的配合体验过程

《AOP编程的基本概念与idea编辑器的配合体验过程》文章简要介绍了AOP基础概念,包括Before/Around通知、PointCut切入点、Advice通知体、JoinPoint连接点等,说明它们... 目录BeforeAroundAdvise — 通知PointCut — 切入点Acpect — 切面

Python多线程应用中的卡死问题优化方案指南

《Python多线程应用中的卡死问题优化方案指南》在利用Python语言开发某查询软件时,遇到了点击搜索按钮后软件卡死的问题,本文将简单分析一下出现的原因以及对应的优化方案,希望对大家有所帮助... 目录问题描述优化方案1. 网络请求优化2. 多线程架构优化3. 全局异常处理4. 配置管理优化优化效果1.

MySQL中优化CPU使用的详细指南

《MySQL中优化CPU使用的详细指南》优化MySQL的CPU使用可以显著提高数据库的性能和响应时间,本文为大家整理了一些优化CPU使用的方法,大家可以根据需要进行选择... 目录一、优化查询和索引1.1 优化查询语句1.2 创建和优化索引1.3 避免全表扫描二、调整mysql配置参数2.1 调整线程数2.

C#异步编程ConfigureAwait的使用小结

《C#异步编程ConfigureAwait的使用小结》本文介绍了异步编程在GUI和服务器端应用的优势,详细的介绍了async和await的关键作用,通过实例解析了在UI线程正确使用await.Conf... 异步编程是并发的一种形式,它有两大好处:对于面向终端用户的GUI程序,提高了响应能力对于服务器端应