HDU 5251 矩形面积 (最小矩形覆盖 凸包+旋转卡壳 详解 推荐)

2024-03-20 13:08

本文主要是介绍HDU 5251 矩形面积 (最小矩形覆盖 凸包+旋转卡壳 详解 推荐),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

矩形面积

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 408    Accepted Submission(s): 232


Problem Description
小度熊有一个桌面,小度熊剪了很多矩形放在桌面上,小度熊想知道能把这些矩形包围起来的面积最小的矩形的面积是多少。
 
Input
第一行一个正整数 T,代表测试数据组数( 1T20 ),接下来 T 组测试数据。
每组测试数据占若干行,第一行一个正整数 N(1N<1000) ,代表矩形的数量。接下来 N 行,每行 8 个整数 x1,y1,x2,y2,x3,y3,x4,y4 ,代表矩形的四个点坐标,坐标绝对值不会超过10000。
 
Output
对于每组测试数据,输出两行:
第一行输出"Case #i:",i 代表第 i 组测试数据。
第二行包含1 个数字,代表面积最小的矩形的面积,结果保留到整数位。
 
Sample Input
  
2 2 5 10 5 8 3 10 3 8 8 8 8 6 7 8 7 6 1 0 0 2 2 2 0 0 2
 
Sample Output
  
Case #1: 17 Case #2: 4
 
Source
2015年百度之星程序设计大赛 - 初赛(1)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5251

题目分析:很明显就是求所有点围成的凸包的最小矩形覆盖,有一个结论(YY出来的),最小覆盖矩形必有一条边和凸包的一条边重合,graham扫描求出凸包,然后从左下的base点开始逆时针枚举边,用旋转卡壳求其余三边,距离下点向左向右向上分别的最远点,求的时候也按照逆时针的顺序,所以是下->右->上->左,求右点用点积最远的显然|a||b|cosθ的值最大,求上点用叉积,对踵点三角形面积最大,求左点和右点同理,一条边和三个点得到后就可以计算面积了,上点和枚举边的距离是当前覆盖矩形的一条边,这个很容易求,因为叉积算出的是平行四边形的面积,所以直接用叉积的结果除枚举边的边长L 即可,然后另一条覆盖矩形的边利用点积来求,设左点指向右点的向量为vt,将左点移动到枚举边的左端点处得到一个夹角A,由于覆盖矩形的第一条边和枚举边是垂直的,因此第二条边就是|vt|cosθ,因为向量的点积等于两个向量的模长积乘夹角的余弦值,即|vt|*L*cosθ = 点积 => |vt|cosθ = 点积 / L


#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
double const INF = 1e40;
int const MAX = 1e3 + 5;
int n, top;
double ans;struct POINT {int x, y;
}p[MAX << 2], stk[MAX << 2], base;double getDist(POINT p1, POINT p2) {return sqrt(1.0 * (p1.x - p2.x) * (p1.x - p2.x) + 1.0 * (p1.y - p2.y) * (p1.y - p2.y));
}int getCross(POINT p0, POINT p1, POINT p2) {return (p1.x - p0.x) * (p2.y - p0.y) - (p2.x - p0.x) * (p1.y - p0.y);
}int getDot(POINT p0, POINT p1, POINT p2) {return (p1.x - p0.x) * (p2.x - p0.x) + (p1.y - p0.y) * (p2.y - p0.y);
}bool cmp(POINT p1, POINT p2) {if (getCross(base, p1, p2) == 0) {return getDist(base, p1) < getDist(base, p2);}if (getCross(base, p1, p2) > 0) {return true;}return false;
}void getBase() {scanf("%d", &n);n = n << 2;scanf("%d %d", &p[0].x, &p[0].y);base.x = p[0].x;base.y = p[0].y;int pos = 0;for (int i = 1; i < n; i ++) {scanf("%d %d", &p[i].x, &p[i].y);if(p[i].y < base.y || (p[i].y == base.y && p[i].x < base.x)) {base.x = p[i].x;base.y = p[i].y;pos = i;}}swap(p[pos], p[0]);
}void getConvex() {sort(p, p + n, cmp);stk[0] = p[0];if (n == 1) {return;}stk[1] = p[1];top = 1;for (int i = 2; i < n; i ++) {while (top > 0 && getCross(stk[top - 1], stk[top], p[i]) <= 0) {top --;}stk[++ top] = p[i];}
}double solve() {ans = INF;int down, left = 0, right = 1, up = 0;stk[++ top] = stk[0];for (down = 0; down < top; down ++) {// find rightwhile (getDot(stk[down], stk[down + 1], stk[right]) <= getDot(stk[down], stk[down + 1], stk[right + 1])) {right = (right + 1) % top;}// find upif(down == 0) {up = right;}while (getCross(stk[down], stk[down + 1], stk[up]) <= getCross(stk[down], stk[down + 1], stk[up + 1])) {up = (up + 1) % top;}//find leftif (down == 0) {left = up;}while (getDot(stk[down], stk[down + 1], stk[left]) >= getDot(stk[down], stk[down + 1], stk[left + 1])) {left = (left + 1) % top;}double dist = getDist(stk[down], stk[down + 1]);double X = getCross(stk[down], stk[down + 1], stk[up]) / dist;POINT tmp;tmp.x = stk[right].x + stk[down].x - stk[left].x;tmp.y = stk[right].y + stk[down].y - stk[left].y;double Y = getDot(stk[down], stk[down + 1], tmp) / dist;ans = min(ans, X * Y);}return ans;
}int main() {int T;scanf("%d", &T);for (int ca = 1; ca <= T; ca ++) {printf("Case #%d:\n", ca);getBase();getConvex();printf("%.f\n", solve());}
}



这篇关于HDU 5251 矩形面积 (最小矩形覆盖 凸包+旋转卡壳 详解 推荐)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/829544

相关文章

Go语言使用select监听多个channel的示例详解

《Go语言使用select监听多个channel的示例详解》本文将聚焦Go并发中的一个强力工具,select,这篇文章将通过实际案例学习如何优雅地监听多个Channel,实现多任务处理、超时控制和非阻... 目录一、前言:为什么要使用select二、实战目标三、案例代码:监听两个任务结果和超时四、运行示例五

Linux线程同步/互斥过程详解

《Linux线程同步/互斥过程详解》文章讲解多线程并发访问导致竞态条件,需通过互斥锁、原子操作和条件变量实现线程安全与同步,分析死锁条件及避免方法,并介绍RAII封装技术提升资源管理效率... 目录01. 资源共享问题1.1 多线程并发访问1.2 临界区与临界资源1.3 锁的引入02. 多线程案例2.1 为

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

idea的终端(Terminal)cmd的命令换成linux的命令详解

《idea的终端(Terminal)cmd的命令换成linux的命令详解》本文介绍IDEA配置Git的步骤:安装Git、修改终端设置并重启IDEA,强调顺序,作为个人经验分享,希望提供参考并支持脚本之... 目录一编程、设置前二、前置条件三、android设置四、设置后总结一、php设置前二、前置条件

python中列表应用和扩展性实用详解

《python中列表应用和扩展性实用详解》文章介绍了Python列表的核心特性:有序数据集合,用[]定义,元素类型可不同,支持迭代、循环、切片,可执行增删改查、排序、推导式及嵌套操作,是常用的数据处理... 目录1、列表定义2、格式3、列表是可迭代对象4、列表的常见操作总结1、列表定义是处理一组有序项目的

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

C++11范围for初始化列表auto decltype详解

《C++11范围for初始化列表autodecltype详解》C++11引入auto类型推导、decltype类型推断、统一列表初始化、范围for循环及智能指针,提升代码简洁性、类型安全与资源管理效... 目录C++11新特性1. 自动类型推导auto1.1 基本语法2. decltype3. 列表初始化3

SQL Server 中的 WITH (NOLOCK) 示例详解

《SQLServer中的WITH(NOLOCK)示例详解》SQLServer中的WITH(NOLOCK)是一种表提示,等同于READUNCOMMITTED隔离级别,允许查询在不获取共享锁的情... 目录SQL Server 中的 WITH (NOLOCK) 详解一、WITH (NOLOCK) 的本质二、工作

springboot自定义注解RateLimiter限流注解技术文档详解

《springboot自定义注解RateLimiter限流注解技术文档详解》文章介绍了限流技术的概念、作用及实现方式,通过SpringAOP拦截方法、缓存存储计数器,结合注解、枚举、异常类等核心组件,... 目录什么是限流系统架构核心组件详解1. 限流注解 (@RateLimiter)2. 限流类型枚举 (