HDU 5251 矩形面积 (最小矩形覆盖 凸包+旋转卡壳 详解 推荐)

2024-03-20 13:08

本文主要是介绍HDU 5251 矩形面积 (最小矩形覆盖 凸包+旋转卡壳 详解 推荐),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

矩形面积

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 408    Accepted Submission(s): 232


Problem Description
小度熊有一个桌面,小度熊剪了很多矩形放在桌面上,小度熊想知道能把这些矩形包围起来的面积最小的矩形的面积是多少。
 
Input
第一行一个正整数 T,代表测试数据组数( 1T20 ),接下来 T 组测试数据。
每组测试数据占若干行,第一行一个正整数 N(1N<1000) ,代表矩形的数量。接下来 N 行,每行 8 个整数 x1,y1,x2,y2,x3,y3,x4,y4 ,代表矩形的四个点坐标,坐标绝对值不会超过10000。
 
Output
对于每组测试数据,输出两行:
第一行输出"Case #i:",i 代表第 i 组测试数据。
第二行包含1 个数字,代表面积最小的矩形的面积,结果保留到整数位。
 
Sample Input
  
2 2 5 10 5 8 3 10 3 8 8 8 8 6 7 8 7 6 1 0 0 2 2 2 0 0 2
 
Sample Output
  
Case #1: 17 Case #2: 4
 
Source
2015年百度之星程序设计大赛 - 初赛(1)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5251

题目分析:很明显就是求所有点围成的凸包的最小矩形覆盖,有一个结论(YY出来的),最小覆盖矩形必有一条边和凸包的一条边重合,graham扫描求出凸包,然后从左下的base点开始逆时针枚举边,用旋转卡壳求其余三边,距离下点向左向右向上分别的最远点,求的时候也按照逆时针的顺序,所以是下->右->上->左,求右点用点积最远的显然|a||b|cosθ的值最大,求上点用叉积,对踵点三角形面积最大,求左点和右点同理,一条边和三个点得到后就可以计算面积了,上点和枚举边的距离是当前覆盖矩形的一条边,这个很容易求,因为叉积算出的是平行四边形的面积,所以直接用叉积的结果除枚举边的边长L 即可,然后另一条覆盖矩形的边利用点积来求,设左点指向右点的向量为vt,将左点移动到枚举边的左端点处得到一个夹角A,由于覆盖矩形的第一条边和枚举边是垂直的,因此第二条边就是|vt|cosθ,因为向量的点积等于两个向量的模长积乘夹角的余弦值,即|vt|*L*cosθ = 点积 => |vt|cosθ = 点积 / L


#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
double const INF = 1e40;
int const MAX = 1e3 + 5;
int n, top;
double ans;struct POINT {int x, y;
}p[MAX << 2], stk[MAX << 2], base;double getDist(POINT p1, POINT p2) {return sqrt(1.0 * (p1.x - p2.x) * (p1.x - p2.x) + 1.0 * (p1.y - p2.y) * (p1.y - p2.y));
}int getCross(POINT p0, POINT p1, POINT p2) {return (p1.x - p0.x) * (p2.y - p0.y) - (p2.x - p0.x) * (p1.y - p0.y);
}int getDot(POINT p0, POINT p1, POINT p2) {return (p1.x - p0.x) * (p2.x - p0.x) + (p1.y - p0.y) * (p2.y - p0.y);
}bool cmp(POINT p1, POINT p2) {if (getCross(base, p1, p2) == 0) {return getDist(base, p1) < getDist(base, p2);}if (getCross(base, p1, p2) > 0) {return true;}return false;
}void getBase() {scanf("%d", &n);n = n << 2;scanf("%d %d", &p[0].x, &p[0].y);base.x = p[0].x;base.y = p[0].y;int pos = 0;for (int i = 1; i < n; i ++) {scanf("%d %d", &p[i].x, &p[i].y);if(p[i].y < base.y || (p[i].y == base.y && p[i].x < base.x)) {base.x = p[i].x;base.y = p[i].y;pos = i;}}swap(p[pos], p[0]);
}void getConvex() {sort(p, p + n, cmp);stk[0] = p[0];if (n == 1) {return;}stk[1] = p[1];top = 1;for (int i = 2; i < n; i ++) {while (top > 0 && getCross(stk[top - 1], stk[top], p[i]) <= 0) {top --;}stk[++ top] = p[i];}
}double solve() {ans = INF;int down, left = 0, right = 1, up = 0;stk[++ top] = stk[0];for (down = 0; down < top; down ++) {// find rightwhile (getDot(stk[down], stk[down + 1], stk[right]) <= getDot(stk[down], stk[down + 1], stk[right + 1])) {right = (right + 1) % top;}// find upif(down == 0) {up = right;}while (getCross(stk[down], stk[down + 1], stk[up]) <= getCross(stk[down], stk[down + 1], stk[up + 1])) {up = (up + 1) % top;}//find leftif (down == 0) {left = up;}while (getDot(stk[down], stk[down + 1], stk[left]) >= getDot(stk[down], stk[down + 1], stk[left + 1])) {left = (left + 1) % top;}double dist = getDist(stk[down], stk[down + 1]);double X = getCross(stk[down], stk[down + 1], stk[up]) / dist;POINT tmp;tmp.x = stk[right].x + stk[down].x - stk[left].x;tmp.y = stk[right].y + stk[down].y - stk[left].y;double Y = getDot(stk[down], stk[down + 1], tmp) / dist;ans = min(ans, X * Y);}return ans;
}int main() {int T;scanf("%d", &T);for (int ca = 1; ca <= T; ca ++) {printf("Case #%d:\n", ca);getBase();getConvex();printf("%.f\n", solve());}
}



这篇关于HDU 5251 矩形面积 (最小矩形覆盖 凸包+旋转卡壳 详解 推荐)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/829544

相关文章

Redis中6种缓存更新策略详解

《Redis中6种缓存更新策略详解》Redis作为一款高性能的内存数据库,已经成为缓存层的首选解决方案,然而,使用缓存时最大的挑战在于保证缓存数据与底层数据源的一致性,本文将介绍Redis中6种缓存更... 目录引言策略一:Cache-Aside(旁路缓存)策略工作原理代码示例优缺点分析适用场景策略二:Re

Java注解之超越Javadoc的元数据利器详解

《Java注解之超越Javadoc的元数据利器详解》本文将深入探讨Java注解的定义、类型、内置注解、自定义注解、保留策略、实际应用场景及最佳实践,无论是初学者还是资深开发者,都能通过本文了解如何利用... 目录什么是注解?注解的类型内置注编程解自定义注解注解的保留策略实际用例最佳实践总结在 Java 编程

MySQL数据库约束深入详解

《MySQL数据库约束深入详解》:本文主要介绍MySQL数据库约束,在MySQL数据库中,约束是用来限制进入表中的数据类型的一种技术,通过使用约束,可以确保数据的准确性、完整性和可靠性,需要的朋友... 目录一、数据库约束的概念二、约束类型三、NOT NULL 非空约束四、DEFAULT 默认值约束五、UN

Python使用Matplotlib绘制3D曲面图详解

《Python使用Matplotlib绘制3D曲面图详解》:本文主要介绍Python使用Matplotlib绘制3D曲面图,在Python中,使用Matplotlib库绘制3D曲面图可以通过mpl... 目录准备工作绘制简单的 3D 曲面图绘制 3D 曲面图添加线框和透明度控制图形视角Matplotlib

MySQL中的分组和多表连接详解

《MySQL中的分组和多表连接详解》:本文主要介绍MySQL中的分组和多表连接的相关操作,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录mysql中的分组和多表连接一、MySQL的分组(group javascriptby )二、多表连接(表连接会产生大量的数据垃圾)MySQL中的

Java 实用工具类Spring 的 AnnotationUtils详解

《Java实用工具类Spring的AnnotationUtils详解》Spring框架提供了一个强大的注解工具类org.springframework.core.annotation.Annot... 目录前言一、AnnotationUtils 的常用方法二、常见应用场景三、与 JDK 原生注解 API 的

redis中使用lua脚本的原理与基本使用详解

《redis中使用lua脚本的原理与基本使用详解》在Redis中使用Lua脚本可以实现原子性操作、减少网络开销以及提高执行效率,下面小编就来和大家详细介绍一下在redis中使用lua脚本的原理... 目录Redis 执行 Lua 脚本的原理基本使用方法使用EVAL命令执行 Lua 脚本使用EVALSHA命令

Maven中引入 springboot 相关依赖的方式(最新推荐)

《Maven中引入springboot相关依赖的方式(最新推荐)》:本文主要介绍Maven中引入springboot相关依赖的方式(最新推荐),本文给大家介绍的非常详细,对大家的学习或工作具有... 目录Maven中引入 springboot 相关依赖的方式1. 不使用版本管理(不推荐)2、使用版本管理(推

SpringBoot3.4配置校验新特性的用法详解

《SpringBoot3.4配置校验新特性的用法详解》SpringBoot3.4对配置校验支持进行了全面升级,这篇文章为大家详细介绍了一下它们的具体使用,文中的示例代码讲解详细,感兴趣的小伙伴可以参考... 目录基本用法示例定义配置类配置 application.yml注入使用嵌套对象与集合元素深度校验开发

Python中的Walrus运算符分析示例详解

《Python中的Walrus运算符分析示例详解》Python中的Walrus运算符(:=)是Python3.8引入的一个新特性,允许在表达式中同时赋值和返回值,它的核心作用是减少重复计算,提升代码简... 目录1. 在循环中避免重复计算2. 在条件判断中同时赋值变量3. 在列表推导式或字典推导式中简化逻辑