HDU 5251 矩形面积 (最小矩形覆盖 凸包+旋转卡壳 详解 推荐)

2024-03-20 13:08

本文主要是介绍HDU 5251 矩形面积 (最小矩形覆盖 凸包+旋转卡壳 详解 推荐),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

矩形面积

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 408    Accepted Submission(s): 232


Problem Description
小度熊有一个桌面,小度熊剪了很多矩形放在桌面上,小度熊想知道能把这些矩形包围起来的面积最小的矩形的面积是多少。
 
Input
第一行一个正整数 T,代表测试数据组数( 1T20 ),接下来 T 组测试数据。
每组测试数据占若干行,第一行一个正整数 N(1N<1000) ,代表矩形的数量。接下来 N 行,每行 8 个整数 x1,y1,x2,y2,x3,y3,x4,y4 ,代表矩形的四个点坐标,坐标绝对值不会超过10000。
 
Output
对于每组测试数据,输出两行:
第一行输出"Case #i:",i 代表第 i 组测试数据。
第二行包含1 个数字,代表面积最小的矩形的面积,结果保留到整数位。
 
Sample Input
  
2 2 5 10 5 8 3 10 3 8 8 8 8 6 7 8 7 6 1 0 0 2 2 2 0 0 2
 
Sample Output
  
Case #1: 17 Case #2: 4
 
Source
2015年百度之星程序设计大赛 - 初赛(1)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5251

题目分析:很明显就是求所有点围成的凸包的最小矩形覆盖,有一个结论(YY出来的),最小覆盖矩形必有一条边和凸包的一条边重合,graham扫描求出凸包,然后从左下的base点开始逆时针枚举边,用旋转卡壳求其余三边,距离下点向左向右向上分别的最远点,求的时候也按照逆时针的顺序,所以是下->右->上->左,求右点用点积最远的显然|a||b|cosθ的值最大,求上点用叉积,对踵点三角形面积最大,求左点和右点同理,一条边和三个点得到后就可以计算面积了,上点和枚举边的距离是当前覆盖矩形的一条边,这个很容易求,因为叉积算出的是平行四边形的面积,所以直接用叉积的结果除枚举边的边长L 即可,然后另一条覆盖矩形的边利用点积来求,设左点指向右点的向量为vt,将左点移动到枚举边的左端点处得到一个夹角A,由于覆盖矩形的第一条边和枚举边是垂直的,因此第二条边就是|vt|cosθ,因为向量的点积等于两个向量的模长积乘夹角的余弦值,即|vt|*L*cosθ = 点积 => |vt|cosθ = 点积 / L


#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
double const INF = 1e40;
int const MAX = 1e3 + 5;
int n, top;
double ans;struct POINT {int x, y;
}p[MAX << 2], stk[MAX << 2], base;double getDist(POINT p1, POINT p2) {return sqrt(1.0 * (p1.x - p2.x) * (p1.x - p2.x) + 1.0 * (p1.y - p2.y) * (p1.y - p2.y));
}int getCross(POINT p0, POINT p1, POINT p2) {return (p1.x - p0.x) * (p2.y - p0.y) - (p2.x - p0.x) * (p1.y - p0.y);
}int getDot(POINT p0, POINT p1, POINT p2) {return (p1.x - p0.x) * (p2.x - p0.x) + (p1.y - p0.y) * (p2.y - p0.y);
}bool cmp(POINT p1, POINT p2) {if (getCross(base, p1, p2) == 0) {return getDist(base, p1) < getDist(base, p2);}if (getCross(base, p1, p2) > 0) {return true;}return false;
}void getBase() {scanf("%d", &n);n = n << 2;scanf("%d %d", &p[0].x, &p[0].y);base.x = p[0].x;base.y = p[0].y;int pos = 0;for (int i = 1; i < n; i ++) {scanf("%d %d", &p[i].x, &p[i].y);if(p[i].y < base.y || (p[i].y == base.y && p[i].x < base.x)) {base.x = p[i].x;base.y = p[i].y;pos = i;}}swap(p[pos], p[0]);
}void getConvex() {sort(p, p + n, cmp);stk[0] = p[0];if (n == 1) {return;}stk[1] = p[1];top = 1;for (int i = 2; i < n; i ++) {while (top > 0 && getCross(stk[top - 1], stk[top], p[i]) <= 0) {top --;}stk[++ top] = p[i];}
}double solve() {ans = INF;int down, left = 0, right = 1, up = 0;stk[++ top] = stk[0];for (down = 0; down < top; down ++) {// find rightwhile (getDot(stk[down], stk[down + 1], stk[right]) <= getDot(stk[down], stk[down + 1], stk[right + 1])) {right = (right + 1) % top;}// find upif(down == 0) {up = right;}while (getCross(stk[down], stk[down + 1], stk[up]) <= getCross(stk[down], stk[down + 1], stk[up + 1])) {up = (up + 1) % top;}//find leftif (down == 0) {left = up;}while (getDot(stk[down], stk[down + 1], stk[left]) >= getDot(stk[down], stk[down + 1], stk[left + 1])) {left = (left + 1) % top;}double dist = getDist(stk[down], stk[down + 1]);double X = getCross(stk[down], stk[down + 1], stk[up]) / dist;POINT tmp;tmp.x = stk[right].x + stk[down].x - stk[left].x;tmp.y = stk[right].y + stk[down].y - stk[left].y;double Y = getDot(stk[down], stk[down + 1], tmp) / dist;ans = min(ans, X * Y);}return ans;
}int main() {int T;scanf("%d", &T);for (int ca = 1; ca <= T; ca ++) {printf("Case #%d:\n", ca);getBase();getConvex();printf("%.f\n", solve());}
}



这篇关于HDU 5251 矩形面积 (最小矩形覆盖 凸包+旋转卡壳 详解 推荐)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/829544

相关文章

MySQL数据库双机热备的配置方法详解

《MySQL数据库双机热备的配置方法详解》在企业级应用中,数据库的高可用性和数据的安全性是至关重要的,MySQL作为最流行的开源关系型数据库管理系统之一,提供了多种方式来实现高可用性,其中双机热备(M... 目录1. 环境准备1.1 安装mysql1.2 配置MySQL1.2.1 主服务器配置1.2.2 从

Linux kill正在执行的后台任务 kill进程组使用详解

《Linuxkill正在执行的后台任务kill进程组使用详解》文章介绍了两个脚本的功能和区别,以及执行这些脚本时遇到的进程管理问题,通过查看进程树、使用`kill`命令和`lsof`命令,分析了子... 目录零. 用到的命令一. 待执行的脚本二. 执行含子进程的脚本,并kill2.1 进程查看2.2 遇到的

MyBatis常用XML语法详解

《MyBatis常用XML语法详解》文章介绍了MyBatis常用XML语法,包括结果映射、查询语句、插入语句、更新语句、删除语句、动态SQL标签以及ehcache.xml文件的使用,感兴趣的朋友跟随小... 目录1、定义结果映射2、查询语句3、插入语句4、更新语句5、删除语句6、动态 SQL 标签7、ehc

详解SpringBoot+Ehcache使用示例

《详解SpringBoot+Ehcache使用示例》本文介绍了SpringBoot中配置Ehcache、自定义get/set方式,并实际使用缓存的过程,文中通过示例代码介绍的非常详细,对大家的学习或者... 目录摘要概念内存与磁盘持久化存储:配置灵活性:编码示例引入依赖:配置ehcache.XML文件:配置

从基础到高级详解Go语言中错误处理的实践指南

《从基础到高级详解Go语言中错误处理的实践指南》Go语言采用了一种独特而明确的错误处理哲学,与其他主流编程语言形成鲜明对比,本文将为大家详细介绍Go语言中错误处理详细方法,希望对大家有所帮助... 目录1 Go 错误处理哲学与核心机制1.1 错误接口设计1.2 错误与异常的区别2 错误创建与检查2.1 基础

k8s按需创建PV和使用PVC详解

《k8s按需创建PV和使用PVC详解》Kubernetes中,PV和PVC用于管理持久存储,StorageClass实现动态PV分配,PVC声明存储需求并绑定PV,通过kubectl验证状态,注意回收... 目录1.按需创建 PV(使用 StorageClass)创建 StorageClass2.创建 PV

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

Redis 基本数据类型和使用详解

《Redis基本数据类型和使用详解》String是Redis最基本的数据类型,一个键对应一个值,它的功能十分强大,可以存储字符串、整数、浮点数等多种数据格式,本文给大家介绍Redis基本数据类型和... 目录一、Redis 入门介绍二、Redis 的五大基本数据类型2.1 String 类型2.2 Hash

Java中的.close()举例详解

《Java中的.close()举例详解》.close()方法只适用于通过window.open()打开的弹出窗口,对于浏览器的主窗口,如果没有得到用户允许是不能关闭的,:本文主要介绍Java中的.... 目录当你遇到以下三种情况时,一定要记得使用 .close():用法作用举例如何判断代码中的 input