【运筹优化】子集和问题(Subset Sum Problems , SSP)介绍 + 动态规划求解 + Java代码实现

本文主要是介绍【运筹优化】子集和问题(Subset Sum Problems , SSP)介绍 + 动态规划求解 + Java代码实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 一、问题介绍
  • 二、动态规划求解思路
  • 三、Java代码实现


一、问题介绍

子集和问题(Subset Sum Problems , SSP),它是复杂性理论中最重要的问题之一。

SSP会给定一组整数 a 1 , a 2 , . . . . , a n a_1,a_2,....,a_n a1,a2,....,an ,最多 n n n 个整数,我们需要判断是否存在一个非空子集,使得子集的总和为 M M M 整数?如果存在则需要输出该子集。

例如,集合给定为 [ 5 , 2 , 1 , 3 , 9 ] [5,2,1,3,9] [5,2,1,3,9] ,子集之和为 9 9 9 ;答案是肯定的,因为子集 [ 5 , 3 , 1 ] [5,3,1] [5,3,1] 的总和等于 9 9 9

这是一个 N P NP NP 完全问题。是背包的特殊情况。

在这里插入图片描述

目的: 给定一组正整数和一个值 S 总和,找出数组中是否存在一个子集,其总和等于给定的总和 S。


二、动态规划求解思路

设 A 是包含“n”个非负整数的数组或集合。找到集合“A”的子集“x”,使得 x 的所有元素的总和等于 w,其中 x 是另一个输入(总和)。

例如:

A = [2, 3, 5, 7, 10]

总和 (w) = 14

首先,我们创建一个表。该列包含从 0 到 14 的值,而行包含给定集合的元素,如下所示:

在下表中:

i :它表示行。行表示元素。

j :它表示列。列表示总和。

在这里插入图片描述
我们将使用 1 作为真值,使用 0 作为假值。值 1 位于 0 和 2 列下,如下所示:

这里 i=1, a[i] =2

注:每列的填充规则如下:
所需总和 = j - 元素
A[i][j] = A[i-1][所需总和]

当 j = 1

所需总和 = 1 - 2 = -1;由于总和为负,因此如上表所示,在第 1 列下输入 0。

当 j = 2

所需总和 = 2 - 2 = 0;由于 sum 的值为零,因此我们将 1 放在第 2 列下,如上表所示。

我们将 0 放在总和大于 2 的列下,因为我们不能从元素 2 中得出总和超过 2。

考虑要素 3。

这里 i = 2, a[i] = 3

在这里插入图片描述
总和小于 3 的列将具有与前几列相同的值。

当 j = 3 时,总和 [j] = 3

所需总和 = 3 -3 = 0;由于总和为零,因此我们将 1 放在第 3 列下,如上表所示。

当 j = 4;总和[j] = 4

所需总和 = 4 - 3 = 1;由于总和为 1,因此我们移至前一行,即 i=1 和 j=1。a[1][1] 处的值为 0,因此我们将 0 放在 a[2][4] 处。

当 j = 5 时,总和 [j] = 5

所需总和 = 5 -3 = 2;sum 的值为 2,因此 a[1][2] 处的值等于 1。因此,a[2][5] 处的值将为 1。

当 j = 6 时,总和 [j] = 6

所需总和 = 6 -3 = 3;sum 的值为 3,因此 a[1][3] 处的值等于 0。因此,a[2][6] 处的值将为 0。

当 j = 7 时,总和 [7] = 7

所需总和 = 7 - 3 = 4;sum 的值为 4,因此 a[1][4] 处的值等于 0。因此,a[2][7] 处的值将为 0。

这样,我们从第 8 列到 14 列中获取值 0。

考虑要素 5。

这里 i=3, a[i] = 5

在这里插入图片描述
总和小于 5 的列将具有与前几列相同的值。

当 j = 5 时,总和 [j] = 5

所需总和 = 5-5 = 0;由于总和的值为 0;因此,A[2][5] 处的值等于 1。

当 j = 6 时,总和 [j] = 6

所需总和 = 6-5 = 1;sum 的值为 1,因此 a[2][1] 处的值等于 0;因此,a[3][6] 处的值等于 0。

当 j=7 时,总和 [j] = 7

所需总和 = 7-5 = 2;sum 的值为 2,因此 a[2][2] 处的值等于 1;因此,a[3][7] 处的值等于 1。

当 j=8 时,总和 [j] = 8

所需总和 = 8-5 = 3;sum 的值为 3,因此 a[2][3] 处的值等于 1;因此,a[3][8] 处的值等于 1。

当 j=9 时,总和 [j] =9

所需总和 = 9-5 = 4;sum 的值为 4,因此 a[2][4] 处的值等于 0;因此,a[3][9] 处的值等于 0。

这样,我们从第 10 列到 14 列中获取值。

考虑要素 7。

这里 i=4, a[i] =7

在这里插入图片描述
总和小于 7 的列将具有与前几列相同的值。

当 j=9 时,总和 [j] = 9

所需总和 = 9 - 7 = 2;sum 的值为 2,因此 a[3][2] 处的值等于 1;因此,a[4][9] 处的值等于 1。

当 j=10 时,总和 [j] = 10

所需总和 = 10 - 7= 3;sum 的值为 3,因此 a[3][3] 处的值等于 1;因此,a[4][10] 处的值等于 1。

当 j=11 时,总和 [j] =11

所需总和 = 11-7 = 4;sum 的值为 4,因此 a[3][4] 处的值等于 0;因此,a[4][11] 处的值等于 0。

当 j=12 时,总和 [j] = 12

所需总和 = 12-7 = 5;sum 的值为 5,因此 a[3][5] 处的值等于 1;因此,a[4][12] 处的值等于 1。

当 j=13 时,总和 [j] =13

所需总和 = 13 - 7 = 6;sum 的值为 6,因此 a[3][6] 处的值等于 0;因此,a[4][13] 处的值等于 0。

当 j=14 时,总和 [j] = 14

所需总和 = 14 - 7 = 7;sum 的值为 7,因此 a[3][7] 处的值等于 1;因此,a[4][14] 处的值等于 1。

考虑元素 10

这里 i=5, a[i] = 10

在这里插入图片描述

总和小于 10 的列将具有与前几列相同的值。

当 j = 10 时,总和 [j] = 10

所需总和 = 10 - 10 = 0;sum 的值为 0,因此 a[4][0] 处的值等于 1;因此,a[5][10] 处的值等于 1。

当 j = 11 时,总和 [j] = 11

所需总和 = 11 - 10 = 1;总和的值为 1,因此 a[4][1] 处的值等于 0;因此,a[5][11] 处的值等于 0。

当 j=12 时,总和 [j] = 12

所需总和 = 12-10 = 2;sum 的值为 2,因此 a[4][2] 处的值等于 1;因此,A[5][12] 处的值等于 1。

当 j=13 时,总和 [j] = 13

所需总和 = 13 - 10 = 3;sum 的值为 3,因此 a[4][3] 处的值等于 1;因此,a[5][13] 处的值等于 1。

为了确定上述给定的问题是否包含子集,我们需要检查最后一行和最后一列。如果值为 1,则表示至少存在一个子集。

我们基本上遵循三个条件,在表的单元格中写入 1:
• A[i] = j
• A[i-1][j] = 1
• A[i-1][j-A[i]] = 1


三、Java代码实现

测试案例

A = {2, 3, 5, 7, 10}
sum = 14

Java代码

import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;/*** @Author:WSKH* @ClassName:SSP_DP* @ClassType:* @Description:* @Date:2022/12/18/18:42* @Email:1187560563@qq.com* @Blog:https://blog.csdn.net/weixin_51545953?type=blog*/
public class SSP_DP {public static void main(String[] args) {int sum = 14;int[] arr = new int[]{2, 3, 5, 7, 10};long s = System.currentTimeMillis();new SSP_DP().solve(arr, sum);System.out.println("用时: " + (System.currentTimeMillis() - s) / 1000d + " s");}static int totalWei = 32;static int arrLength;public void solve(int[] arr, int sum) {// 如果sum=0直接返回空集if (sum == 0) {System.out.println(new ArrayList<>());return;}// 深拷贝数组arr = arr.clone();// 升序排序数组Arrays.sort(arr);SubSolution[] dp = new SubSolution[sum + 1];arrLength = arr.length;for (int rowIndex = 0; rowIndex < arr.length; rowIndex++) {if (arr[rowIndex] > sum) {break;}// 遍历上一层除了0位置外,有1的位置if (rowIndex > 0) {for (int colIndex = sum - arr[rowIndex]; colIndex >= 1; colIndex--) {if (dp[colIndex] != null) {if (dp[colIndex + arr[rowIndex]] == null) {dp[colIndex + arr[rowIndex]] = new SubSolution(dp[colIndex].flag, rowIndex);}}}}// 将刚好等于的位置赋值if (dp[arr[rowIndex]] == null) {dp[arr[rowIndex]] = new SubSolution(rowIndex);}for (SubSolution subSolution : dp) {System.out.print((subSolution == null ? 0 : 1) + ",");}System.out.println();}if (dp[sum] != null) {int checkSum = 0;List<Integer> valueList = new ArrayList<>();for (int i = 0; i < arr.length; i++) {if ((dp[sum].flag[i / totalWei] & (1 << (i % totalWei))) != 0) {valueList.add(arr[i]);checkSum += arr[i];}}if (checkSum != sum) {throw new RuntimeException(valueList + " 的和不等于 " + sum);}System.out.println(valueList);} else {System.out.println(Arrays.toString(arr) + "中,没有和为" + sum + "的子集");}}public static class SubSolution {int[] flag;public SubSolution() {flag = new int[arrLength / totalWei + 1];}public SubSolution(int index) {flag = new int[arrLength / totalWei + 1];flag[index / totalWei] = (flag[index / totalWei] | (1 << index % totalWei));}public SubSolution(int[] flag, int index) {this.flag = flag.clone();this.flag[index / totalWei] = (this.flag[index / totalWei] | (1 << index % totalWei));}}}

输出

0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,1,1,0,1,0,0,0,0,0,0,0,0,0,
0,0,1,1,0,1,0,1,1,0,1,0,0,0,0,
0,0,1,1,0,1,0,1,1,1,1,0,1,0,1,
0,0,1,1,0,1,0,1,1,1,1,0,1,1,1,
[2, 5, 7]
用时: 0.002 s

这篇关于【运筹优化】子集和问题(Subset Sum Problems , SSP)介绍 + 动态规划求解 + Java代码实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/829485

相关文章

一文详解如何在idea中快速搭建一个Spring Boot项目

《一文详解如何在idea中快速搭建一个SpringBoot项目》IntelliJIDEA作为Java开发者的‌首选IDE‌,深度集成SpringBoot支持,可一键生成项目骨架、智能配置依赖,这篇文... 目录前言1、创建项目名称2、勾选需要的依赖3、在setting中检查maven4、编写数据源5、开启热

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

Java对异常的认识与异常的处理小结

《Java对异常的认识与异常的处理小结》Java程序在运行时可能出现的错误或非正常情况称为异常,下面给大家介绍Java对异常的认识与异常的处理,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参... 目录一、认识异常与异常类型。二、异常的处理三、总结 一、认识异常与异常类型。(1)简单定义-什么是

Python实例题之pygame开发打飞机游戏实例代码

《Python实例题之pygame开发打飞机游戏实例代码》对于python的学习者,能够写出一个飞机大战的程序代码,是不是感觉到非常的开心,:本文主要介绍Python实例题之pygame开发打飞机... 目录题目pygame-aircraft-game使用 Pygame 开发的打飞机游戏脚本代码解释初始化部

SpringBoot项目配置logback-spring.xml屏蔽特定路径的日志

《SpringBoot项目配置logback-spring.xml屏蔽特定路径的日志》在SpringBoot项目中,使用logback-spring.xml配置屏蔽特定路径的日志有两种常用方式,文中的... 目录方案一:基础配置(直接关闭目标路径日志)方案二:结合 Spring Profile 按环境屏蔽关

Python实现精准提取 PDF中的文本,表格与图片

《Python实现精准提取PDF中的文本,表格与图片》在实际的系统开发中,处理PDF文件不仅限于读取整页文本,还有提取文档中的表格数据,图片或特定区域的内容,下面我们来看看如何使用Python实... 目录安装 python 库提取 PDF 文本内容:获取整页文本与指定区域内容获取页面上的所有文本内容获取

基于Python实现一个Windows Tree命令工具

《基于Python实现一个WindowsTree命令工具》今天想要在Windows平台的CMD命令终端窗口中使用像Linux下的tree命令,打印一下目录结构层级树,然而还真有tree命令,但是发现... 目录引言实现代码使用说明可用选项示例用法功能特点添加到环境变量方法一:创建批处理文件并添加到PATH1

Java使用HttpClient实现图片下载与本地保存功能

《Java使用HttpClient实现图片下载与本地保存功能》在当今数字化时代,网络资源的获取与处理已成为软件开发中的常见需求,其中,图片作为网络上最常见的资源之一,其下载与保存功能在许多应用场景中都... 目录引言一、Apache HttpClient简介二、技术栈与环境准备三、实现图片下载与保存功能1.