pandas 学习汇总3 - Series,DataFrame迭代iter( tcy)

2024-03-20 09:48

本文主要是介绍pandas 学习汇总3 - Series,DataFrame迭代iter( tcy),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

迭代iter   2018/12/1=======================================================================
1.基本iteration()产生:#系列:值;DataFrame:列标签;面板:项目标签
# 迭代Series类似数组,迭代产生值。其他数据结构如DataFrame遵循迭代对象“键”的类似dicts = pd.Series( [1,2,3],index=['a', 'b', 'c'])
for col in s:print(col,end=",")  #1 ,2 ,3,df = pd.DataFrame({'col1' : [1,2,3], 'col2' : [4,5.0,6]},index=['a', 'b', 'c'])
for col in df:print(col)           # col1 col2
=======================================================================2.iteritems 类似dict遍历键值对:
# 系列 :(索引,标量值)对;DataFrame :(列,系列)对;面板 :( item,DataFrame)对for index,value in s.iteritems():print('(%s,%s)'%(index,value,),end='') # (a,1)(b,2)(c,3)for col,s0 in df.iteritems():print(col)print(s0)
# col1
# a    1
# b    2
# c    3
# Name: col1, dtype: int64
# col2
# a    4.0
# b    5.0
# c    6.0
# Name: col2, dtype: float64
=====================================================================
3.迭代DataFrame行iterrows()迭代DataFrame行返回迭代器,产生索引值及每行Series;没有保留跨行dtypes
itertuples()返回迭代器,为DataFrame每一行产生一个namedtuple。# 元组的第一个元素是行的相应索引值,而其余值是行值。#  itertuples()保留值的数据类型快于iterrows()# 实例1:
for row_index, row in df.iterrows():print('%s\n%s' % (row_index, row))#  a
# col1    1.0
# col2    4.0
# Name: a, dtype: float64
# b
# col1    2.0
# col2    5.0
# Name: b, dtype: float64
# c
# col1    3.0
# col2    6.0
# Name: c, dtype: float64# 实例2:
for row in df.itertuples():print(row)# Pandas(Index='a', col1=1, col2=4.0)
# Pandas(Index='b', col1=2, col2=5.0)
# Pandas(Index='c', col1=3, col2=6.0)
======================================================================
4.备注# pandas对象迭代通常很慢。在许多情况下,不需要在行上迭代,用以下方法之一避免:# 矢量化:内置方法或NumPy函数(布尔)索引,若无函数可用最好用apply()而不是迭代值。# 性能很重要用cython或numba编写内部循环。警告迭代器返回副本而不是视图,写入它将不起作用!
======================================================================

这篇关于pandas 学习汇总3 - Series,DataFrame迭代iter( tcy)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/829073

相关文章

Unity新手入门学习殿堂级知识详细讲解(图文)

《Unity新手入门学习殿堂级知识详细讲解(图文)》Unity是一款跨平台游戏引擎,支持2D/3D及VR/AR开发,核心功能模块包括图形、音频、物理等,通过可视化编辑器与脚本扩展实现开发,项目结构含A... 目录入门概述什么是 UnityUnity引擎基础认知编辑器核心操作Unity 编辑器项目模式分类工程

Python学习笔记之getattr和hasattr用法示例详解

《Python学习笔记之getattr和hasattr用法示例详解》在Python中,hasattr()、getattr()和setattr()是一组内置函数,用于对对象的属性进行操作和查询,这篇文章... 目录1.getattr用法详解1.1 基本作用1.2 示例1.3 原理2.hasattr用法详解2.

Python按照24个实用大方向精选的上千种工具库汇总整理

《Python按照24个实用大方向精选的上千种工具库汇总整理》本文整理了Python生态中近千个库,涵盖数据处理、图像处理、网络开发、Web框架、人工智能、科学计算、GUI工具、测试框架、环境管理等多... 目录1、数据处理文本处理特殊文本处理html/XML 解析文件处理配置文件处理文档相关日志管理日期和

Python38个游戏开发库整理汇总

《Python38个游戏开发库整理汇总》文章介绍了多种Python游戏开发库,涵盖2D/3D游戏开发、多人游戏框架及视觉小说引擎,适合不同需求的开发者入门,强调跨平台支持与易用性,并鼓励读者交流反馈以... 目录PyGameCocos2dPySoyPyOgrepygletPanda3DBlenderFife

pandas数据的合并concat()和merge()方式

《pandas数据的合并concat()和merge()方式》Pandas中concat沿轴合并数据框(行或列),merge基于键连接(内/外/左/右),concat用于纵向或横向拼接,merge用于... 目录concat() 轴向连接合并(1) join='outer',axis=0(2)join='o

Python pandas库自学超详细教程

《Pythonpandas库自学超详细教程》文章介绍了Pandas库的基本功能、安装方法及核心操作,涵盖数据导入(CSV/Excel等)、数据结构(Series、DataFrame)、数据清洗、转换... 目录一、什么是Pandas库(1)、Pandas 应用(2)、Pandas 功能(3)、数据结构二、安

Python安装Pandas库的两种方法

《Python安装Pandas库的两种方法》本文介绍了三种安装PythonPandas库的方法,通过cmd命令行安装并解决版本冲突,手动下载whl文件安装,更换国内镜像源加速下载,最后建议用pipli... 目录方法一:cmd命令行执行pip install pandas方法二:找到pandas下载库,然后

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

Java设计模式---迭代器模式(Iterator)解读

《Java设计模式---迭代器模式(Iterator)解读》:本文主要介绍Java设计模式---迭代器模式(Iterator),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录1、迭代器(Iterator)1.1、结构1.2、常用方法1.3、本质1、解耦集合与遍历逻辑2、统一

linux重启命令有哪些? 7个实用的Linux系统重启命令汇总

《linux重启命令有哪些?7个实用的Linux系统重启命令汇总》Linux系统提供了多种重启命令,常用的包括shutdown-r、reboot、init6等,不同命令适用于不同场景,本文将详细... 在管理和维护 linux 服务器时,完成系统更新、故障排查或日常维护后,重启系统往往是必不可少的步骤。本文