pandas28 update-用另一个DataFrame中的非NA值进行就地修改(补全全部实例 tcy)

2024-03-20 09:38

本文主要是介绍pandas28 update-用另一个DataFrame中的非NA值进行就地修改(补全全部实例 tcy),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

============================================================
1.函数df.update(other, join='left', overwrite=True, filter_func=None, raise_conflict=False)用途:# 用另一个DataFrame中的非NA值进行就地修改参数:# other:DataFrame,至少有一个匹配的索引/列标签;Series必设name属性# join:{'left'}仅实现左连接,保留原始对象的索引和列# overwrite =True:处理重叠键(行索引)非NA值:#     * True:覆盖原始df值#     * False:仅更新原始df中na的值# filter_func:callable(1d-array) - > boolean 1d-array#     可替换NA以外值。返回True表示值应该更新。函数参数作用于df# raise_conflict=False:为True,则会在df和other同一位置都是非na值时引发ValueError
============================================================
# 实例1.1:
df = pd.DataFrame({'A': [11, 12, 13],'B': [14, 15, 16]})
new_df = pd.DataFrame({'B': [21, 22,23],'C': [24, 25, 26]})
df.update(new_df)
dfA   B
0  11  21
1  12  22
2  13  23# 实例1.2:df长度不会增加,仅更新匹配的索引/列标签处的值。
df = pd.DataFrame({'A': ['a1', 'a2', 'a3'], 'B': ['b1', 'b2', 'b3']})
new_df = pd.DataFrame({'B': ['c1', 'c2', 'c3', 'c4', 'c5']})
df.update(new_df)
dfA   B
0  a1  c1
1  a2  c2
2  a3  c3# 实例1.3:
df = pd.DataFrame({'A': [11, 12, 13],'B': [14, 15, 16]})
new_df = pd.DataFrame({'B': ['c1', 'c2', 'c3', 'c4', 'c5']})
df.update(new_df)
dfA   B
0  11  c1
1  12  c2
2  13  c3
============================================================
# 实例2.1:对于Series,必须设置其name属性。
df = pd.DataFrame({'A': ['a1', 'a2', 'a3'], 'B': ['b1', 'b2', 'b3']})
new_column = pd.Series(['c1', 'c3'], name='B', index=[0, 2])
df.update(new_column)
dfA   B
0  a1  c1
1  a2  b2
2  a3  c3# 实例2.2:
df = pd.DataFrame({'A': ['a1', 'a2', 'a3'], 'B': ['b1', 'b2', 'b3']})
new_column = pd.Series(['c2', 'c3'], name='B', index=[1, 2])
df.update(new_column)
dfA   B
0  a1  b1
1  a2  c2
2  a3  c3
============================================================
# 实例3:如果other包含NaN,则不会更新df的值
df = pd.DataFrame({'A': [11, 12, 13],'B': [14, 15, 16]})
new_df = pd.DataFrame({'B': [24, np.nan, 26]})
df.update(new_df)
dfA     B
0  11  24.0
1  12  15.0
2  13  26.0
============================================================
# 实例4:过滤函数df>=15的值被替代
df = pd.DataFrame({'A': [11, 12, 13],'B': [14, 15, 16]})
new_df = pd.DataFrame({'B': [21, 22,23],'C': [24, 25, 26]})
df.update(new_df,filter_func=lambda  s:s>=15)
dfA   B
0  11  14
1  12  22
2  13  23
============================================================
# 实例5.1:overwrite重复行索引
df = pd.DataFrame({'A': [11, 12, 13],'B': [14, np.nan, 16]},index=[0,1,1])
new_df = pd.DataFrame({'B': [21, 22,23],'C': [24, 25, 26]})
df.update(new_df)
dfA     B
0  11  21.0
1  12  22.0
1  13  22.0# 实例5.2:df = pd.DataFrame({'A': [11, 12, 13],'B': [14, np.nan, 16]},index=[0,1,1])
new_df = pd.DataFrame({'B': [21, 22,23],'C': [24, 25, 26]})
df.update(new_df,overwrite=True)
dfA     B
0  11  21.0
1  12  22.0
1  13  22.0
============================================================
# 实例6.1:
df = pd.DataFrame({'A': [11, 12],'B': [np.nan, np.nan]})
new_df = pd.DataFrame({'B': [21, 22],'C': [24, 25]})
df.update(new_df,raise_conflict=True)
dfA     B
0  11  21.0
1  12  22.0# 实例6.2:df = pd.DataFrame({'A': [11, 12],'B': [13, np.nan]})
new_df = pd.DataFrame({'B': [21, 22],'C': [24, 25]})
df.update(new_df,raise_conflict=True)#ValueError;df和other同一位置都是非na值时引发ValueError

 

这篇关于pandas28 update-用另一个DataFrame中的非NA值进行就地修改(补全全部实例 tcy)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/829050

相关文章

Python进行JSON和Excel文件转换处理指南

《Python进行JSON和Excel文件转换处理指南》在数据交换与系统集成中,JSON与Excel是两种极为常见的数据格式,本文将介绍如何使用Python实现将JSON转换为格式化的Excel文件,... 目录将 jsON 导入为格式化 Excel将 Excel 导出为结构化 JSON处理嵌套 JSON:

MySQL多实例管理如何在一台主机上运行多个mysql

《MySQL多实例管理如何在一台主机上运行多个mysql》文章详解了在Linux主机上通过二进制方式安装MySQL多实例的步骤,涵盖端口配置、数据目录准备、初始化与启动流程,以及排错方法,适用于构建读... 目录一、什么是mysql多实例二、二进制方式安装MySQL1.获取二进制代码包2.安装基础依赖3.清

SpringBoot 异常处理/自定义格式校验的问题实例详解

《SpringBoot异常处理/自定义格式校验的问题实例详解》文章探讨SpringBoot中自定义注解校验问题,区分参数级与类级约束触发的异常类型,建议通过@RestControllerAdvice... 目录1. 问题简要描述2. 异常触发1) 参数级别约束2) 类级别约束3. 异常处理1) 字段级别约束

Apache Ignite缓存基本操作实例详解

《ApacheIgnite缓存基本操作实例详解》文章介绍了ApacheIgnite中IgniteCache的基本操作,涵盖缓存获取、动态创建、销毁、原子及条件更新、异步执行,强调线程池注意事项,避免... 目录一、获取缓存实例(Getting an Instance of a Cache)示例代码:二、动态

一文解密Python进行监控进程的黑科技

《一文解密Python进行监控进程的黑科技》在计算机系统管理和应用性能优化中,监控进程的CPU、内存和IO使用率是非常重要的任务,下面我们就来讲讲如何Python写一个简单使用的监控进程的工具吧... 目录准备工作监控CPU使用率监控内存使用率监控IO使用率小工具代码整合在计算机系统管理和应用性能优化中,监

如何使用Lombok进行spring 注入

《如何使用Lombok进行spring注入》本文介绍如何用Lombok简化Spring注入,推荐优先使用setter注入,通过注解自动生成getter/setter及构造器,减少冗余代码,提升开发效... Lombok为了开发环境简化代码,好处不用多说。spring 注入方式为2种,构造器注入和setter

MySQL进行数据库审计的详细步骤和示例代码

《MySQL进行数据库审计的详细步骤和示例代码》数据库审计通过触发器、内置功能及第三方工具记录和监控数据库活动,确保安全、完整与合规,Java代码实现自动化日志记录,整合分析系统提升监控效率,本文给大... 目录一、数据库审计的基本概念二、使用触发器进行数据库审计1. 创建审计表2. 创建触发器三、Java

MySQL深分页进行性能优化的常见方法

《MySQL深分页进行性能优化的常见方法》在Web应用中,分页查询是数据库操作中的常见需求,然而,在面对大型数据集时,深分页(deeppagination)却成为了性能优化的一个挑战,在本文中,我们将... 目录引言:深分页,真的只是“翻页慢”那么简单吗?一、背景介绍二、深分页的性能问题三、业务场景分析四、

JSONArray在Java中的应用操作实例

《JSONArray在Java中的应用操作实例》JSONArray是org.json库用于处理JSON数组的类,可将Java对象(Map/List)转换为JSON格式,提供增删改查等操作,适用于前后端... 目录1. jsONArray定义与功能1.1 JSONArray概念阐释1.1.1 什么是JSONA

SpringBoot结合Docker进行容器化处理指南

《SpringBoot结合Docker进行容器化处理指南》在当今快速发展的软件工程领域,SpringBoot和Docker已经成为现代Java开发者的必备工具,本文将深入讲解如何将一个SpringBo... 目录前言一、为什么选择 Spring Bootjavascript + docker1. 快速部署与