时序预测 | Matlab基于BiTCN-LSTM双向时间卷积长短期记忆神经网络时间序列预测

本文主要是介绍时序预测 | Matlab基于BiTCN-LSTM双向时间卷积长短期记忆神经网络时间序列预测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

时序预测 | Matlab基于BiTCN-LSTM双向时间卷积长短期记忆神经网络时间序列预测

目录

    • 时序预测 | Matlab基于BiTCN-LSTM双向时间卷积长短期记忆神经网络时间序列预测
      • 预测效果
      • 基本介绍
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.Matlab基于BiTCN-LSTM双向时间卷积长短期记忆神经网络时间序列预测(完整源码和数据),单变量时间序列预测,运行环境matlab2023及以上,excel数据,方便替换;
2.评价指标RMSE、MAPE、MAE、MSE、R2等;
3.程序语言为matlab,程序可出预测效果图,误差分析图。
4.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。

在这里插入图片描述

BiTCN-LSTM(双向时间卷积长短期记忆神经网络)是一个结合了时间卷积网络(Temporal Convolutional Networks, TCN)和长短时记忆网络(Long Short-Term Memory, LSTM)的混合模型,专门设计用于处理时间序列预测任务。该模型试图通过结合两种强大的深度学习架构来捕捉时间序列数据中的长期和短期依赖关系。

双向时间卷积网络(Bi-directional TCN):

TCN 使用因果卷积(Causal Convolutions)来处理时间序列数据,并通过膨胀卷积(Dilated Convolutions)来增加感受野(Receptive Field),从而捕捉长期依赖关系。
双向TCN则允许模型在两个方向上(正向和反向)同时处理时间序列数据,这有助于捕捉更多的上下文信息。
长短时记忆网络(LSTM):

LSTM 是一种特殊的循环神经网络(RNN),通过引入记忆单元和门控机制来解决传统RNN在处理长期依赖时的梯度消失和梯度爆炸问题。
LSTM 能够学习并记住时间序列数据中的长期依赖关系,并将其用于预测任务。
结合这两种技术,BiTCN-LSTM 能够更有效地处理复杂的时间序列预测问题。它首先通过双向TCN捕捉时间序列数据中的局部特征和长期依赖关系,然后将这些特征传递给LSTM进行进一步的处理和预测。

这种混合模型在处理具有复杂动态和长期依赖的时间序列数据时可能表现出优越的性能。然而,它也需要更多的计算资源和调参技巧来充分发挥其潜力。

需要注意的是,虽然 BiTCN-LSTM 在理论上看起来很有前途,但在实际应用中,其性能和效果还需要根据具体的任务和数据集进行验证和调整。同时,该模型可能并不是所有时间序列预测任务的最佳选择,因此在选择模型时需要仔细考虑任务的特点和需求。

程序设计

  • 完整源码和数据获取方式资源出下载Matlab基于BiTCN-LSTM双向时间卷积长短期记忆神经网络时间序列预测 。
% 添加残差块到网络lgraph = addLayers(lgraph, layers);% 连接卷积层到残差块lgraph = connectLayers(lgraph, outputName, "conv1_" + i);% 创建 TCN反向支路flip网络结构Fliplayers = [FlipLayer("flip_" + i)                                                                                               % 反向翻转convolution1dLayer(1, numFilters, Name = "convSkip_"+i);                                                             % 反向残差连接convolution1dLayer(filterSize, numFilters, DilationFactor = dilationFactor, Padding = "causal", Name="conv2_" + i)   % 一维卷积层layerNormalizationLayer                                                                                              % 层归一化spatialDropoutLayer(dropoutFactor)                                                                                   % 空间丢弃层convolution1dLayer(filterSize, numFilters, DilationFactor = dilationFactor, Padding = "causal")                      % 一维卷积层layerNormalizationLayer                                                                                              % 层归一化reluLayer                                                                                                            % 激活层spatialDropoutLayer(dropoutFactor, Name="drop" + i)                                                                  % 空间丢弃层];% 添加 flip 网络结构到网络lgraph = addLayers(lgraph, Fliplayers);% 连接 flip 卷积层到残差块lgraph = connectLayers(lgraph, outputName, "flip_" + i);lgraph = connectLayers(lgraph, "drop" + i, "add_" + i + "/in3");lgraph = connectLayers(lgraph, "convSkip_"+i, "add_" + i + "/in4");% 残差连接 -- 首层if i == 1% 建立残差卷积层% Include convolution in first skip connection.layer = convolution1dLayer(1,numFilters,Name="convSkip");lgraph = addLayers(lgraph,layer);lgraph = connectLayers(lgraph,outputName,"convSkip");lgraph = connectLayers(lgraph,"convSkip","add_" + i + "/in2");elselgraph = connectLayers(lgraph,outputName,"add_" + i + "/in2");end% Update layer output name.outputName = "add_" + i;
end
% CSDN 机器学习之心

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

这篇关于时序预测 | Matlab基于BiTCN-LSTM双向时间卷积长短期记忆神经网络时间序列预测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/828680

相关文章

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

MySQL按时间维度对亿级数据表进行平滑分表

《MySQL按时间维度对亿级数据表进行平滑分表》本文将以一个真实的4亿数据表分表案例为基础,详细介绍如何在不影响线上业务的情况下,完成按时间维度分表的完整过程,感兴趣的小伙伴可以了解一下... 目录引言一、为什么我们需要分表1.1 单表数据量过大的问题1.2 分表方案选型二、分表前的准备工作2.1 数据评估

MySQL中DATE_FORMAT时间函数的使用小结

《MySQL中DATE_FORMAT时间函数的使用小结》本文主要介绍了MySQL中DATE_FORMAT时间函数的使用小结,用于格式化日期/时间字段,可提取年月、统计月份数据、精确到天,对大家的学习或... 目录前言DATE_FORMAT时间函数总结前言mysql可以使用DATE_FORMAT获取日期字段

Linux中的自定义协议+序列反序列化用法

《Linux中的自定义协议+序列反序列化用法》文章探讨网络程序在应用层的实现,涉及TCP协议的数据传输机制、结构化数据的序列化与反序列化方法,以及通过JSON和自定义协议构建网络计算器的思路,强调分层... 目录一,再次理解协议二,序列化和反序列化三,实现网络计算器3.1 日志文件3.2Socket.hpp

Python标准库datetime模块日期和时间数据类型解读

《Python标准库datetime模块日期和时间数据类型解读》文章介绍Python中datetime模块的date、time、datetime类,用于处理日期、时间及日期时间结合体,通过属性获取时间... 目录Datetime常用类日期date类型使用时间 time 类型使用日期和时间的结合体–日期时间(

Java获取当前时间String类型和Date类型方式

《Java获取当前时间String类型和Date类型方式》:本文主要介绍Java获取当前时间String类型和Date类型方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录Java获取当前时间String和Date类型String类型和Date类型输出结果总结Java获取

Python实现批量提取BLF文件时间戳

《Python实现批量提取BLF文件时间戳》BLF(BinaryLoggingFormat)作为Vector公司推出的CAN总线数据记录格式,被广泛用于存储车辆通信数据,本文将使用Python轻松提取... 目录一、为什么需要批量处理 BLF 文件二、核心代码解析:从文件遍历到数据导出1. 环境准备与依赖库