利用Surprise包进行电影推荐

2024-03-20 00:59
文章标签 进行 推荐 电影 surprise

本文主要是介绍利用Surprise包进行电影推荐,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Surprise(Simple Python Recommendation System Engine)是一款推荐系统库,是scikit系列中的一个。简单易用,同时支持多种推荐算法(基础算法、协同过滤、矩阵分解等)。

设计surprise时考虑到以下目的:

  • 让用户完美控制他们的实验。为此,特别强调 文档,试图通过指出算法的每个细节尽可能清晰和准确。
  • 减轻数据集处理的痛苦。用户可以使用内置数据集(Movielens, Jester)和他们自己的自定义 数据集。
  • 提供各种即用型预测算法, 例如基线算法, 邻域方法,基于矩阵因子分解( SVD, PMF, SVD ++,NMF)等等。此外, 内置了各种相似性度量(余弦,MSD,皮尔逊......)。
  • 可以轻松实现新的算法思路。
  • 提供评估, 分析 和 比较 算法性能的工具。使用强大的CV迭代器(受scikit-learn优秀工具启发)以及 对一组参数的详尽搜索,可以非常轻松地运行交叉验证程序 。

1.Surprise安装

pip install numpy
pip install scikit-surprise

在安装之前首先确认安装了numpy模块。

2.基本算法

算法类名说明
random_pred.NormalPredictor根据训练集的分布特征随机给出一个预测值
baseline_only.BaselineOnly给定用户和Item,给出基于baseline的估计值
knns.KNNBasic最基础的协同过滤
knns.KNNWithMeans将每个用户评分的均值考虑在内的协同过滤实现
knns.KNNBaseline考虑基线评级的协同过滤
matrix_factorization.SVDSVD实现
matrix_factorization.SVDppSVD++,即LFM+SVD
matrix_factorization.NMF基于矩阵分解的协同过滤
slope_one.SlopeOne一个简单但精确的协同过滤算法
co_clustering.CoClustering基于协同聚类的协同过滤算法

其中基于近邻的方法(协同过滤)可以设定不同的度量准则

相似度度量标准度量标准说明
cosine计算所有用户(或物品)对之间的余弦相似度。
msd计算所有用户(或物品)对之间的均方差异相似度。
pearson计算所有用户(或物品)对之间的Pearson相关系数。
pearson_baseline计算所有用户(或物品)对之间的(缩小的)Pearson相关系数,使用基线进行居中而不是平均值。

支持不同的评估准则

评估准则准则说明
rmse计算RMSE(均方根误差)。
mae计算MAE(平均绝对误差)。
fcp计算FCP(协调对的分数)。

3.Surprise使用

(1)载入自带的数据集

#-*- coding:utf-8 -*-
# 可以使用上面提到的各种推荐系统算法
from surprise import SVD
from surprise import Dataset, print_perf
from surprise.model_selection import cross_validate# 默认载入movielens数据集
data = Dataset.load_builtin('ml-100k')
# k折交叉验证(k=3),此方法现已弃用
# data.split(n_folds=3)
# 试一把SVD矩阵分解
algo = SVD()
# 在数据集上测试一下效果
perf = cross_validate(algo, data, measures=['RMSE', 'MAE'], cv=3)
#输出结果
print_perf(perf)

运行结果:

 

(2)载入自己的数据集

from surprise import SVD
from surprise import Dataset, print_perf, Reader
from surprise.model_selection import cross_validate
import os# 指定文件所在路径
file_path = os.path.expanduser('data.csv')
# 告诉文本阅读器,文本的格式是怎么样的
reader = Reader(line_format='user item rating', sep=',')
# 加载数据
data = Dataset.load_from_file(file_path, reader=reader)
algo = SVD()
# 在数据集上测试一下效果
perf = cross_validate(algo, data, measures=['RMSE', 'MAE'], cv=3)
#输出结果
print_perf(perf)

需要注意:

1.无法识别中文,如果有中文,需要将其转换成ID号再进行操作(以下列出一种简单的转换方式)

2.不能有表头,需要去掉表头和元数据中有中文的列

3.需要修改Reader,line_format 就是数据的列,sep 是分隔方式(表格格式初始分割方式是‘,’)

一种简单的数据转换方式:

#-*- coding:utf-8 -*-
# 构建物品idimport pandas as pddf = pd.read_csv('train_score.csv', encoding="gbk")
# 读取第二列的数据
item_name = df.iloc[:, 1]
item = {}
item_id = []
num = 0
# 将每个不同的物品与id号进行关联
for i in item_name:if i in item:item_id.append(item[i])else:item[i] = numitem_id.append(num)num += 1
print item_id
df['itemId'] = item_id
df.to_csv("data.csv", encoding="gbk", index=False)

4.算法调参

这里实现的算法用到的算法无外乎也是SGD等,因此也有一些超参数会影响最后的结果,我们同样可以用sklearn中常用到的网格搜索交叉验证(GridSearchCV)来选择最优的参数。简单的例子如下所示:

# 定义好需要优选的参数网格
param_grid = {'n_epochs': [5, 10], 'lr_all': [0.002, 0.005],'reg_all': [0.4, 0.6]}
# 使用网格搜索交叉验证
grid_search = GridSearch(SVD, param_grid, measures=['RMSE', 'FCP'])
# 在数据集上找到最好的参数
data = Dataset.load_builtin('ml-100k')
data.split(n_folds=3)
grid_search.evaluate(data)
# 输出调优的参数组 
# 输出最好的RMSE结果
print(grid_search.best_score['RMSE'])
# >>> 0.96117566386# 输出对应最好的RMSE结果的参数
print(grid_search.best_params['RMSE'])
# >>> {'reg_all': 0.4, 'lr_all': 0.005, 'n_epochs': 10}# 最好的FCP得分
print(grid_search.best_score['FCP'])
# >>> 0.702279736531# 对应最高FCP得分的参数
print(grid_search.best_params['FCP'])
# >>> {'reg_all': 0.6, 'lr_all': 0.005, 'n_epochs': 10}
GridSearchCV 方法:
# 定义好需要优选的参数网格
param_grid = {'n_epochs': [5, 10], 'lr_all': [0.002, 0.005],'reg_all': [0.4, 0.6]}
# 使用网格搜索交叉验证
grid_search = GridSearchCV(SVD, param_grid, measures=['RMSE', 'FCP'], cv=3)
# 在数据集上找到最好的参数
data = Dataset.load_builtin('ml-100k')
# pref = cross_validate(grid_search, data, cv=3)
grid_search.fit(data)
# 输出调优的参数组
# 输出最好的RMSE结果
print(grid_search.best_score)
1.estimator
选择使用的分类器,并且传入除需要确定最佳的参数之外的其他参数。
每一个分类器都需要一个scoring参数,或者score方法:
如estimator=RandomForestClassifier(min_samples_split=100,min_samples_leaf=20,max_depth=8,max_features='sqrt',random_state=10),2.param_grid
需要最优化的参数的取值,值为字典或者列表,例如:param_grid =param_test1,param_test1 = {'n_estimators':range(10,71,10)}。3. scoring=None
模型评价标准,默认None,这时需要使用score函数;或者如scoring='roc_auc',
根据所选模型不同,评价准则不同。字符串(函数名),或是可调用对象,
需要其函数签名形如:scorer(estimator, X, y);如果是None,则使用estimator的误差估计函数。4.n_jobs=1
n_jobs: 并行数,int:个数,-1:跟CPU核数一致, 1:默认值5.cv=None交叉验证参数,默认None,使用三折交叉验证。指定fold数量,默认为3,也可以是yield产生训练/测试数据的生成器。6.verbose=0, scoring=None
verbose:日志冗长度,int:冗长度,0:不输出训练过程,1:偶尔输出,>1:对每个子模型都输出。7.pre_dispatch=‘2*n_jobs’
指定总共分发的并行任务数。当n_jobs大于1时,数据将在每个运行点进行复制,这可能导致OOM,
而设置pre_dispatch参数,则可以预先划分总共的job数量,使数据最多被复制pre_dispatch次8.return_train_score=’warn’
如果“False”,cv_results_属性将不包括训练分数。9.refit :默认为True,程序将会以交叉验证训练集得到的最佳参数,重新对所有可用的训练集与开发集进行,
作为最终用于性能评估的最佳模型参数。即在搜索参数结束后,用最佳参数结果再次fit一遍全部数据集。10.iid:默认True,为True时,默认为各个样本fold概率分布一致,误差估计为所有样本之和,而非各个fold的平均。进行预测的常用方法和属性
grid.fit():运行网格搜索
grid_scores_:给出不同参数情况下的评价结果
best_params_:描述了已取得最佳结果的参数的组合
best_score_:成员提供优化过程期间观察到的最好的评

5.使用不同的推荐系统算法进行建模比较

from surprise import Dataset, print_perf
from surprise.model_selection import cross_validate
data = Dataset.load_builtin('ml-100k')
### 使用NormalPredictor
from surprise import NormalPredictor
algo = NormalPredictor()
perf = cross_validate(algo, data, measures=['RMSE', 'MAE'], cv=3)
print_perf(perf)### 使用BaselineOnly
from surprise import BaselineOnly
algo = BaselineOnly()
perf = cross_validate(algo, data, measures=['RMSE', 'MAE'], cv=3)
print_perf(perf)### 使用基础版协同过滤
from surprise import KNNBasic, evaluate
algo = KNNBasic()
perf = cross_validate(algo, data, measures=['RMSE', 'MAE'], cv=3)
print_perf(perf)### 使用均值协同过滤
from surprise import KNNWithMeans, evaluate
algo = KNNWithMeans()
perf = cross_validate(algo, data, measures=['RMSE', 'MAE'], cv=3)
print_perf(perf)### 使用协同过滤baseline
from surprise import KNNBaseline, evaluate
algo = KNNBaseline()
perf = cross_validate(algo, data, measures=['RMSE', 'MAE'], cv=3)
print_perf(perf)### 使用SVD
from surprise import SVD, evaluate
algo = SVD()
perf = cross_validate(algo, data, measures=['RMSE', 'MAE'], cv=3)
print_perf(perf)### 使用SVD++
from surprise import SVDpp, evaluate
algo = SVDpp()
perf = cross_validate(algo, data, measures=['RMSE', 'MAE'], cv=3)
print_perf(perf)### 使用NMF
from surprise import NMF
algo = NMF()
perf = cross_validate(algo, data, measures=['RMSE', 'MAE'], cv=3)
print_perf(perf)

6.movielens推荐实例

#-*- coding:utf-8 -*-
from __future__ import (absolute_import, division, print_function,unicode_literals)
import os
import io
from surprise import KNNBaseline
from surprise import Datasetimport logginglogging.basicConfig(level=logging.INFO,format='%(asctime)s %(filename)s[line:%(lineno)d] %(levelname)s %(message)s',datefmt='%a, %d %b %Y %H:%M:%S')# 训练推荐模型 步骤:1
def getSimModle():# 默认载入movielens数据集data = Dataset.load_builtin('ml-100k')trainset = data.build_full_trainset()#使用pearson_baseline方式计算相似度  False以item为基准计算相似度 本例为电影之间的相似度sim_options = {'name': 'pearson_baseline', 'user_based': False}##使用KNNBaseline算法algo = KNNBaseline(sim_options=sim_options)#训练模型
    algo.fit(trainset)return algo# 获取id到name的互相映射  步骤:2
def read_item_names():"""获取电影名到电影id 和 电影id到电影名的映射"""file_name = (os.path.expanduser('~') +'/.surprise_data/ml-100k/ml-100k/u.item')rid_to_name = {}name_to_rid = {}with io.open(file_name, 'r', encoding='ISO-8859-1') as f:for line in f:line = line.split('|')rid_to_name[line[0]] = line[1]name_to_rid[line[1]] = line[0]return rid_to_name, name_to_rid# 基于之前训练的模型 进行相关电影的推荐  步骤:3
def showSimilarMovies(algo, rid_to_name, name_to_rid):# 获得电影Toy Story (1995)的raw_idtoy_story_raw_id = name_to_rid['Toy Story (1995)']logging.debug('raw_id=' + toy_story_raw_id)#把电影的raw_id转换为模型的内部idtoy_story_inner_id = algo.trainset.to_inner_iid(toy_story_raw_id)logging.debug('inner_id=' + str(toy_story_inner_id))#通过模型获取推荐电影 这里设置的是10部toy_story_neighbors = algo.get_neighbors(toy_story_inner_id, 10)logging.debug('neighbors_ids=' + str(toy_story_neighbors))#模型内部id转换为实际电影idneighbors_raw_ids = [algo.trainset.to_raw_iid(inner_id) for inner_id in toy_story_neighbors]#通过电影id列表 或得电影推荐列表neighbors_movies = [rid_to_name[raw_id] for raw_id in neighbors_raw_ids]print('The 10 nearest neighbors of Toy Story are:')for movie in neighbors_movies:print(movie)if __name__ == '__main__':# 获取id到name的互相映射rid_to_name, name_to_rid = read_item_names()# 训练推荐模型algo = getSimModle()##显示相关电影showSimilarMovies(algo, rid_to_name, name_to_rid)

运行结果:

  

 

转载于:https://www.cnblogs.com/lzhc/p/9545134.html

这篇关于利用Surprise包进行电影推荐的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/827786

相关文章

Knife4j+Axios+Redis前后端分离架构下的 API 管理与会话方案(最新推荐)

《Knife4j+Axios+Redis前后端分离架构下的API管理与会话方案(最新推荐)》本文主要介绍了Swagger与Knife4j的配置要点、前后端对接方法以及分布式Session实现原理,... 目录一、Swagger 与 Knife4j 的深度理解及配置要点Knife4j 配置关键要点1.Spri

Qt QCustomPlot库简介(最新推荐)

《QtQCustomPlot库简介(最新推荐)》QCustomPlot是一款基于Qt的高性能C++绘图库,专为二维数据可视化设计,它具有轻量级、实时处理百万级数据和多图层支持等特点,适用于科学计算、... 目录核心特性概览核心组件解析1.绘图核心 (QCustomPlot类)2.数据容器 (QCPDataC

Java内存分配与JVM参数详解(推荐)

《Java内存分配与JVM参数详解(推荐)》本文详解JVM内存结构与参数调整,涵盖堆分代、元空间、GC选择及优化策略,帮助开发者提升性能、避免内存泄漏,本文给大家介绍Java内存分配与JVM参数详解,... 目录引言JVM内存结构JVM参数概述堆内存分配年轻代与老年代调整堆内存大小调整年轻代与老年代比例元空

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

Go语言中nil判断的注意事项(最新推荐)

《Go语言中nil判断的注意事项(最新推荐)》本文给大家介绍Go语言中nil判断的注意事项,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1.接口变量的特殊行为2.nil的合法类型3.nil值的实用行为4.自定义类型与nil5.反射判断nil6.函数返回的

Golang如何对cron进行二次封装实现指定时间执行定时任务

《Golang如何对cron进行二次封装实现指定时间执行定时任务》:本文主要介绍Golang如何对cron进行二次封装实现指定时间执行定时任务问题,具有很好的参考价值,希望对大家有所帮助,如有错误... 目录背景cron库下载代码示例【1】结构体定义【2】定时任务开启【3】使用示例【4】控制台输出总结背景

python 常见数学公式函数使用详解(最新推荐)

《python常见数学公式函数使用详解(最新推荐)》文章介绍了Python的数学计算工具,涵盖内置函数、math/cmath标准库及numpy/scipy/sympy第三方库,支持从基础算术到复杂数... 目录python 数学公式与函数大全1. 基本数学运算1.1 算术运算1.2 分数与小数2. 数学函数

Python Pillow 库详解文档(最新推荐)

《PythonPillow库详解文档(最新推荐)》Pillow是Python中最流行的图像处理库,它是PythonImagingLibrary(PIL)的现代分支和继承者,本文给大家介绍Pytho... 目录python Pillow 库详解文档简介安装核心模块架构Image 模块 - 核心图像处理基本导入

使用Python进行GRPC和Dubbo协议的高级测试

《使用Python进行GRPC和Dubbo协议的高级测试》GRPC(GoogleRemoteProcedureCall)是一种高性能、开源的远程过程调用(RPC)框架,Dubbo是一种高性能的分布式服... 目录01 GRPC测试安装gRPC编写.proto文件实现服务02 Dubbo测试1. 安装Dubb

CSS Anchor Positioning重新定义锚点定位的时代来临(最新推荐)

《CSSAnchorPositioning重新定义锚点定位的时代来临(最新推荐)》CSSAnchorPositioning是一项仍在草案中的新特性,由Chrome125开始提供原生支持需... 目录 css Anchor Positioning:重新定义「锚定定位」的时代来了! 什么是 Anchor Pos