从零开始学习深度学习库-4:自动微分

2024-03-19 17:44

本文主要是介绍从零开始学习深度学习库-4:自动微分,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

欢迎来到本系列的第四部分,在这里我们将讨论自动微分

介绍

自动微分(Automatic Differentiation,简称AD)是一种计算数学函数导数(梯度)的技术。在深度学习和其他领域中,自动微分是一种极其重要的工具,特别是在梯度下降这类优化算法中。不同于数值微分和符号微分,自动微分以一种高效和精确的方式计算导数。

自动微分的关键特点包括:

1.计算图: 自动微分通常通过构建一个计算图来实现,这个图包含了原始函数的所有操作。在这个图中,每个节点代表一个操作(如加法、乘法等),而边代表数据(如变量、常数)之间的依赖关系。

2.前向传播与反向传播: 在计算图中,自动微分主要有两种模式:前向模式(Forward mode)和反向模式(Reverse mode)。前向模式适用于输入变量少的情况,而反向模式(也被称为反向传播算法)在深度学习中更为常用,特别是当输出变量少而输入变量多的时候。

3.链式法则: 自动微分的核心是链式法则,它允许从复合函数的内部函数开始,逐步计算每一部分的导数,最终得到整个复合函数的导数。在反向模式下,这个过程从输出开始,沿着计算图向输入方向进行。

4.高效与精确: 与数值微分相比,自动微分不仅计算速度更快,而且避免了数值稳定性问题。与符号微分不同,它不会产生复杂的中间表达式,因此更加高效。

简单来说,一个函数对于某个变量的导数衡量了该函数的结果随变量改变而发生的变化量。它本质上衡量了函数对于该变量变化的敏感度。这是训练神经网络的一个重要部分。

到目前为止,在我们的库中,我们一直手动计算变量的导数。然而,在实际中,深度学习库依赖于自动微分。

自动微分是通过代码表达的任何数值函数的导数精确计算的过程。

更简单地说,对于我们在代码中进行的任何计算,我们应该能够计算出该计算中使用的任何变量的导数。

...
y = 2*x + 10
y.grad(x) #what is the gradient of x???
...

正向模式自动微分与反向模式自动微分

自动微分有两种流行的方法:正向模式和反向模式。

正向模式利用双数来计算导数。

双数是任何形式的数…
x = a + b ϵ x = a + b\epsilon x=a+bϵ
这里 ϵ \epsilon ϵ是一个非常接近0的数字,因此 ϵ 2 = 0 \epsilon ^2 = 0 ϵ2=0
如果我们对双数应用一个函数,如下所示…

f ( x ) = f ( a + b ϵ ) = f ( a ) + ( f ′ ( a ) ⋅ b ) ϵ f(x) = f(a + b\epsilon) = f(a) + (f'(a) \cdot b)\epsilon f(x)=f(a+bϵ)=f(a)+(f(a)b)ϵ

你可以看到我们既计算了 f ( a ) f(a) f(a) 的结果,也计算了 a a a 的梯度,梯度由 ϵ \epsilon ϵ 的系数给出。

当输入维度小于函数的输出维度时,更倾向于使用正向模式;然而,在深度学习环境中,输入维度通常会大于输出维度。在这种情况下,反向模式更为适用。
在我们的库中,我们将因为这个原因实现反向模式微分。

反向模式微分实现起来稍微有些复杂。

在执行计算时,会构建一个计算图。

例如,下面的图示展示了 f ( x ) = 2 x 2 + 2 y 4 f(x) = \frac{2x^2+2y}{4} f(x)=42x2+2y的计算图。
在这里插入图片描述
在我们的库中,我们将实现反向模式微分。

反向模式微分在实现上稍微复杂一些。

随着计算执行,将构建出一个计算图。

使用函数评估和图,可以计算出函数中所用所有变量的导数。

这是因为每个操作节点都配备了一种机制,以计算它所涉及的节点的偏导数。

如果我们观察图中的右下角节点(2y的平方节点),乘法节点应该能够计算出相对于"y"节点和"2"节点的导数。

由于导数的计算方法取决于所涉及的操作,因此每个操作节点都会有不同的机制。

当使用图计算导数时,我发现采用深度优先的方式遍历图更为简单。你从最顶部的节点开始,计算它相对于下一个节点的导数(记住,是深度优先遍历),并记录该节点的梯度。然后移动到该节点并重复此过程。每次你在图中下移一级,都将你刚计算的梯度与上一级计算的梯度相乘(这是由于链式法则)。重复这一过程,直到记录了所有节点的梯度。

注意:没有必要计算图中所有的梯度。如果你只想找到单个变量的梯度,一旦计算出它的梯度就可以停止。但是,我们通常希望找出多个变量的梯度,所以一次性计算图中所有的梯度在计算上更为经济,因为它只需要进行一次图求值。如果你只想找出所有你所需的变量的梯度,你将不得不对每个变量进行图的单独求值,这样做在计算上会更加昂贵。

微分规则
这里列出了计算图中每个节点使用的不同微分规则。

注意:所有这些规则都展示了偏导数,这意味着一切非我们正在求梯度的变量都被当作常数对待。

在以下内容中,将 xy 视为图中的节点,而 z 视为这些节点间应用操作的结果。

在乘法节点…
在这里插入图片描述
在除法节点处
在这里插入图片描述

加法:
在这里插入图片描述
减法:
在这里插入图片描述
幂运算:
在这里插入图片描述
链式法则随后用来在图中反向传播所有的梯度…
y = f ( g ( x ) ) d y d x = f ′ ( g ( x ) ) ⋅ g ′ ( x ) y = f(g(x)) \frac{dy}{dx} = f'(g(x)) \cdot g'(x) y=f(g(x))dxdy=f(g(x))g(x)
然而,在进行矩阵乘法时,链式法则会有所不同…
z = x ⋅ y d z d x = f ′ ( z ) ⊗ y T d z d y = x T ⊗ f ′ ( z ) z = x \cdot y \frac{dz}{dx} = f'(z) \otimes y^T \frac{dz}{dy} = x^T \otimes f'(z) z=xydxdz=f(z)yTdydz=xTf(z)

代码

第一步:建立Tensor类

import numpy as np
import string
import randomdef id_generator(size=10, chars=string.ascii_uppercase + string.digits):return ''.join(random.choice(chars) for _ in range(size))np.seterr(invalid='ignore')def is_matrix(o):return type(o) == np.ndarraydef same_shape(s1, s2):for a, b in zip(s1, s2):if a != b:return Falsereturn Trueclass Tensor:__array_priority__ = 1000def __init__(self, value, trainable=True):self.value = valueself.dependencies = []self.grads = []self.grad_value = Noneself.shape = 0self.matmul_product = Falseself.gradient = 0self.trainable = trainableself.id = id_generator()if is_matrix(value):self.shape = value.shape

第二步:生成使用随机字符的唯一ID的函数

def id_generator(size=10, chars=string.ascii_uppercase + string.digits):return ''.join(random.choice(chars) for _ in range(size))

第三步:一个简单的函数,检查一个值是否是一个数字数组

def is_matrix(o):return type(o) == np.ndarray

这一行应该是不言自明的,它只是保存了给定张量的值。

self.value = value

如果张量是任何操作的结果,例如加法或除法,这个属性将保存参与该操作产生此张量的张量列表(这就是计算图的构建方式)。如果张量不是任何操作的结果,那么这将是空的。

self.dependencies = [] 
self.grads = []#这个属性将保存每个张量对张量的依赖关系的导数列表。

self.shape 用于存储张量值的形状。只有 numpy 数组有形状,这就是为什么它的默认值是 0。

self.shape = 0
...
if is_matrix(value):self.shape = value.shape

指定张量是否是矩阵乘法的结果(这一点很重要,因为链式法则对矩阵乘法的工作方式有所不同)。

在我们使用计算图来计算梯度之后,这个属性将存储为张量计算出的梯度。它最初被设置为一个和它的值形状相同的全1矩阵。

self.matmul_product = False
self.trainable = trainable
self.id = id_generator()

张量将需要有某种方式来唯一标识自己。当我们在后续的文章中重构我们的优化器以使用这个自动微分模块时,我们将看到这一点的用处。

完整代码

class Tensor:__array_priority__ = 1000def __init__(self, value, trainable=True):self.value = valueself.dependencies = []self.grads = []self.grad_value = Noneself.shape = 0self.matmul_product = Falseself.gradient = 0self.trainable = trainableself.id = id_generator()if is_matrix(value):self.shape = value.shapedef depends_on(self, target):if self == target:return Truedependencies = self.dependenciesfor dependency in dependencies:if dependency == target:return Trueelif dependency.depends_on(target):return Truereturn Falsedef __mul__(self, other):if not (isinstance(other, Tensor)):other = Tensor(other, trainable=False)var = Tensor(self.value * other.value)var.dependencies.append(self)var.dependencies.append(other)var.grads.append(other.value)var.grads.append(self.value)return vardef __rmul__(self, other):if not (isinstance(other, Tensor)):other = Tensor(other, trainable=False)var = Tensor(self.value * other.value)var.dependencies.append(self)var.dependencies.append(other)var.grads.append(other.value)var.grads.append(self.value)return vardef __add__(self, other):if not (isinstance(other, Tensor)):other = Tensor(other, trainable=False)var = Tensor(self.value + other.value)var.dependencies.append(self)var.dependencies.append(other)var.grads.append(np.ones_like(self.value))var.grads.append(np.ones_like(other.value))return vardef __radd__(self, other):if not (isinstance(other, Tensor)):other = Tensor(other, trainable=False)var = Tensor(self.value + other.value)var.dependencies.append(self)var.dependencies.append(other)var.grads.append(np.ones_like(self.value))var.grads.append(np.ones_like(other.value))return vardef __sub__(self, other):if not (isinstance(other, Tensor)):other = Tensor(other)var = Tensor(self.value - other.value)var.dependencies.append(self)var.dependencies.append(other)var.grads.append(np.ones_like(self.value))var.grads.append(-np.ones_like(other.value))return vardef __rsub__(self, other):if not (isinstance(other, Tensor)):other = Tensor(other, trainable=False)var = Tensor(other.value - self.value)var.dependencies.append(other)var.dependencies.append(self)var.grads.append(np.ones_like(other.value))var.grads.append(-np.one_like(self.value))return vardef __pow__(self, other):if not (isinstance(other, Tensor)):other = Tensor(other, trainable=False)var = Tensor(self.value ** other.value)var.dependencies.append(self)var.dependencies.append(other)grad_wrt_self = other.value * self.value ** (other.value - 1)var.grads.append(grad_wrt_self)grad_wrt_other = (self.value ** other.value) * np.log(self.value)var.grads.append(grad_wrt_other)return vardef __rpow__(self, other):if not (isinstance(other, Tensor)):other = Tensor(other, trainable=False)var = Tensor(other.value ** self.value)var.dependencies.append(other)var.dependencies.append(self)grad_wrt_other = self.value * other.value ** (self.value - 1)var.grads.append(grad_wrt_other)grad_wrt_self = (other.value ** self.value) * np.log(other.value)var.grads.append(grad_wrt_self)return vardef __truediv__(self, other):return self * (other ** -1)def __rtruediv__(self, other):return other * (self ** -1)def __matmul__(self, other):if not (isinstance(other, Tensor)):other = Tensor(other, trainable=False)var = Tensor(self.value @ other.value)var.dependencies.append(self)var.dependencies.append(other)var.grads.append(other.value.T)var.grads.append(self.value.T)var.matmul_product = Truereturn vardef __rmatmul__(self, other):if not (isinstance(other, Tensor)):other = Tensor(other, trainable=False)var = Tensor(other.value @ self.value)var.dependencies.append(other)var.dependencies.append(self)var.grads.append(self.value.T)var.grads.append(other.value.T)var.matmul_product = Truereturn var

避免篇幅过长,后面部分在下一篇文章中讲解

这篇关于从零开始学习深度学习库-4:自动微分的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/826777

相关文章

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

Java MCP 的鉴权深度解析

《JavaMCP的鉴权深度解析》文章介绍JavaMCP鉴权的实现方式,指出客户端可通过queryString、header或env传递鉴权信息,服务器端支持工具单独鉴权、过滤器集中鉴权及启动时鉴权... 目录一、MCP Client 侧(负责传递,比较简单)(1)常见的 mcpServers json 配置

Maven中生命周期深度解析与实战指南

《Maven中生命周期深度解析与实战指南》这篇文章主要为大家详细介绍了Maven生命周期实战指南,包含核心概念、阶段详解、SpringBoot特化场景及企业级实践建议,希望对大家有一定的帮助... 目录一、Maven 生命周期哲学二、default生命周期核心阶段详解(高频使用)三、clean生命周期核心阶

深度剖析SpringBoot日志性能提升的原因与解决

《深度剖析SpringBoot日志性能提升的原因与解决》日志记录本该是辅助工具,却为何成了性能瓶颈,SpringBoot如何用代码彻底破解日志导致的高延迟问题,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言第一章:日志性能陷阱的底层原理1.1 日志级别的“双刃剑”效应1.2 同步日志的“吞吐量杀手”

基于Redis自动过期的流处理暂停机制

《基于Redis自动过期的流处理暂停机制》基于Redis自动过期的流处理暂停机制是一种高效、可靠且易于实现的解决方案,防止延时过大的数据影响实时处理自动恢复处理,以避免积压的数据影响实时性,下面就来详... 目录核心思路代码实现1. 初始化Redis连接和键前缀2. 接收数据时检查暂停状态3. 检测到延时过

Unity新手入门学习殿堂级知识详细讲解(图文)

《Unity新手入门学习殿堂级知识详细讲解(图文)》Unity是一款跨平台游戏引擎,支持2D/3D及VR/AR开发,核心功能模块包括图形、音频、物理等,通过可视化编辑器与脚本扩展实现开发,项目结构含A... 目录入门概述什么是 UnityUnity引擎基础认知编辑器核心操作Unity 编辑器项目模式分类工程

深度解析Python yfinance的核心功能和高级用法

《深度解析Pythonyfinance的核心功能和高级用法》yfinance是一个功能强大且易于使用的Python库,用于从YahooFinance获取金融数据,本教程将深入探讨yfinance的核... 目录yfinance 深度解析教程 (python)1. 简介与安装1.1 什么是 yfinance?

Python学习笔记之getattr和hasattr用法示例详解

《Python学习笔记之getattr和hasattr用法示例详解》在Python中,hasattr()、getattr()和setattr()是一组内置函数,用于对对象的属性进行操作和查询,这篇文章... 目录1.getattr用法详解1.1 基本作用1.2 示例1.3 原理2.hasattr用法详解2.