IoT设备消息洪峰怎么扛? 阿里云AIoT消息队列深度解读

2024-03-19 05:40

本文主要是介绍IoT设备消息洪峰怎么扛? 阿里云AIoT消息队列深度解读,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

简介:本文整理了一份IoT队列的干货知识,让物联网从业者更进一步了解IoT场景队列,一同探讨一个适合于物联网系统的消息队列。

传统的消息队列((Kafka、RocketMQ等)经过多年打磨,在高性能、海量堆积、消息可靠性等诸多方面都已经做得非常极致,但在物联网场景中,往往需要面临着海量的消息传递,传统的消息队列表现的“力不从心”。

IoT领域中,从应用服务器到嵌入式芯片,都需要传递事件消息,比如共享充电宝的开柜子、开灯指令从服务器发到设备、工业网关高频消息流等,在这些信息传递的过程中,队列最大意义在于让整个消息事件在不可控的环境因素变成一个平稳运行的系统,因为IoT设备时不时会由于故障或网络抖动会导致大量消息洪峰。

阿里云AIoT作为物联网领域的引领者和创新者,在消息队列领域不断深耕与沉淀,为了让物联网从业者更进一步了解IoT场景队列,阿里云技术专家吕建文,整理了一份IoT队列的干货知识,与大家一同探讨一个适合于物联网系统的消息队列。


一、IoT队列和普通队列的差异点

1,上下行隔离拆分


在IoT场景中,我们把需要队列分为两个场景,一个是上行队列,一个是下行队列。 拆分之后,可以隔离上下行链路,控制一个设备,比如支付成功要下发打开柜子等,上行出任何问题,千万不能影响到下行业务。另外,上下行两条链路的特点差异非常大。设备上行消息,并发量非常高,但很多场景下对于可靠性和时延要求低,而设备下行消息,并发量则比较低,但下行消息(一般是控制设备指令)要求到达成功率很高。

1.jpg

2,支持设备级的海量topic


传统队列的核心诉求是,不论堆积多少不影响它的性能。kafka的topic一多,原本消息顺序写文件优势就会导致一个broker要退化到随机写,失去优势,另外要zookeeper来协调这么多topic也是有局限,所以这些队列本身有提供一个外挂代理桥接器对外入口是多个设备topic,再桥接映射到少量的实际kafka topic,这方案有一定可行性,但做不到隔离效果,治标不治本。


通过,图1和图2对比较明显,一个队列拥塞尽量减少对其它设备影响。我们需要的是“海量topic尽量相互隔离,并且不影响整体性能”,尽量做到设备A的消息堆积topic,不影响设备B。

2.jpg

3,实时生成消息优先发送


先举一个例子,一个快递柜业务的队列堆积,然后“此时此刻”在柜子旁边的用户死命的在旁边用手机点开柜子怎么也打不开(此时后端系统都恢复了),问题就是队列里面还有几十万条的消息,新来的消息需要排队, 等着之前的那些消息消费完,甭管这些消息还有没有用。  因此,实时生成消息优先发送,堆积的消息进入降级模式。


二、IoT消息队列诞生


1, IoT队列的设计思路

3.jpg

设计目标是为了打造一个支持上下行隔离、实时优先、及海量topic的队列网关,设计原则如下:

  • 完全follow开源生态、和传统队列互补兼容
  • 保序降级,实时优先,堆积退化;仅实时消息相对有序。
  • 海量topic,多租户隔离
  • 连接、计算、存储分离
2, 消息模式


图片只是个片段,从这个模式可以看出来机制差别,大家都没有错,只是出发点不同。

4.jpg

3, 连接、计算、存储分离

5.jpg

broker不做连接,连接网关代理,broker只做流转分发,无状态+水平扩展;存储交给nosql DB,高吞吐写。

4, 消息策略-推拉结合


这个应该是队列的核心难点之一,和传统队列区分在于,我们考虑为平台化模式,独享资源过于昂贵。但带来问题是消费端不可控,所以使用结合模式,只有在消费者在线时会拉取堆积消息,而拉取是由AMQP队列网关来做,给到用户接口始终是推送过去的onMessage回调。

6.jpg

  • broker不是直接让consumer来连接,而是把队列网关剥离出来,  这样会更灵活,甚至对于部分用户我们的queue可以切换到ons、kafka等实现。kafka、rocketmq做法是在连接时会分配给客户端一个broker接入地址。


  • broker实时消息优先推送给consumer,失败才会落到queue ;这是一个完整事件,如果没有完成则不给producer commit。


  • 异步ACK


5, 线性扩展-离线消息部分


实时部分消息采用推方式,基本上不会成为瓶颈,消费不过来消息进入堆积模式。由于底层依赖存储已经帮我们解决核心存储的扩展,剩下主要问题点在于如何消除写入热点和消费热点,这样broker可以完全做到无状态。

640.png

三,一个思考——如何解决海量topic问题?



首先面对“大量”的问题一般都是考虑分区,单元化,分组等隔离和拆分,这里海量topic我们讨论针对一个单实例模式下如何尽可能做到更多topic,完全任意数量都能100%没问题肯定是不现实的。


由于broker和存储已经隔离,broker和topic已经没有什么关系,或者说任何topic数据生成,broker做的事情就是写入和分发。

  • 海量topic,每个topic有限数量订阅:  topic和订阅者关系使用redis缓存或本地缓存,针对mqtt topic匹配有个topic tree的树算法,hivemq有实现版本。
  • 单个topic 海量订阅:  这个场景其实是组播和广播,我们不会考虑在队列本身上面去做这个事情,而是在上层封装广播组件来协调任务和批量发送。 


四, 阿里云AIoT消息队列

8.jpg

目前阿里云AIoT队列,也叫服务端订阅,意思就是用户用服务端订阅他们设备消息。为了降低接入成本,用户可以使用AMQP1.0协议接入,符合开源生态。 同时兼容传统队列和新队列,交给用户按场景来选择,用户即可选择使用kafka、mq,也可以选用iot队列,甚至组合模式,比如按消息特征规则来配置流转队列。

阿里云AIoT的场景队列实践,在现有mq队列、kafka队列融合之外,加了种自有的实时优先队列实现,同时,加入了队列网关代理,既能让用户选择普通消息队列,也可以选择轻便的IoT消息队列。

原文链接:https://developer.aliyun.com/article/785685?

版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。

这篇关于IoT设备消息洪峰怎么扛? 阿里云AIoT消息队列深度解读的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/824977

相关文章

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

Linux jq命令的使用解读

《Linuxjq命令的使用解读》jq是一个强大的命令行工具,用于处理JSON数据,它可以用来查看、过滤、修改、格式化JSON数据,通过使用各种选项和过滤器,可以实现复杂的JSON处理任务... 目录一. 简介二. 选项2.1.2.2-c2.3-r2.4-R三. 字段提取3.1 普通字段3.2 数组字段四.

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

MySQL之搜索引擎使用解读

《MySQL之搜索引擎使用解读》MySQL存储引擎是数据存储和管理的核心组件,不同引擎(如InnoDB、MyISAM)采用不同机制,InnoDB支持事务与行锁,适合高并发场景;MyISAM不支持事务,... 目录mysql的存储引擎是什么MySQL存储引擎的功能MySQL的存储引擎的分类查看存储引擎1.命令

Spring的基础事务注解@Transactional作用解读

《Spring的基础事务注解@Transactional作用解读》文章介绍了Spring框架中的事务管理,核心注解@Transactional用于声明事务,支持传播机制、隔离级别等配置,结合@Tran... 目录一、事务管理基础1.1 Spring事务的核心注解1.2 注解属性详解1.3 实现原理二、事务事

Linux五种IO模型的使用解读

《Linux五种IO模型的使用解读》文章系统解析了Linux的五种IO模型(阻塞、非阻塞、IO复用、信号驱动、异步),重点区分同步与异步IO的本质差异,强调同步由用户发起,异步由内核触发,通过对比各模... 目录1.IO模型简介2.五种IO模型2.1 IO模型分析方法2.2 阻塞IO2.3 非阻塞IO2.4

linux配置podman阿里云容器镜像加速器详解

《linux配置podman阿里云容器镜像加速器详解》本文指导如何配置Podman使用阿里云容器镜像加速器:登录阿里云获取专属加速地址,修改Podman配置文件并移除https://前缀,最后拉取镜像... 目录1.下载podman2.获取阿里云个人容器镜像加速器地址3.更改podman配置文件4.使用po

MySQL8.0临时表空间的使用及解读

《MySQL8.0临时表空间的使用及解读》MySQL8.0+引入会话级(temp_N.ibt)和全局(ibtmp1)InnoDB临时表空间,用于存储临时数据及事务日志,自动创建与回收,重启释放,管理高... 目录一、核心概念:为什么需要“临时表空间”?二、InnoDB 临时表空间的两种类型1. 会话级临时表