注意力机制篇 | YOLOv8改进之添加CA注意力机制

2024-03-18 23:36

本文主要是介绍注意力机制篇 | YOLOv8改进之添加CA注意力机制,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言:Hello大家好,我是小哥谈。CA(Channel Attention)注意力机制是一种用于计算机视觉任务的注意力机制,它可以通过学习通道之间的关系来提高模型的性能。本文所做出的改进即在YOLOv8主干网络中添加CA注意力机制!~🌈 

     目录

🚀1.基础概念

🚀2.网络结构

🚀3.添加步骤

🚀4.改进方法

🍀🍀步骤1:conv.py文件修改

🍀🍀步骤2:__init__.py文件修改

🍀🍀步骤3:tasks.py文件修改

🍀🍀步骤4:创建自定义yaml文件

🍀🍀步骤5:新建train.py文件

🍀🍀步骤6:模型训练测试

🚀1. 基础概念

CA(Channel Attention)注意力机制是一种用于计算机视觉任务的注意力机制,它可以通过学习通道之间的关系来提高模型的性能。CA注意力机制的基本思想是,对于给定的输入特征图,通过学习通道之间的关系来计算每个通道的权重,然后将这些权重应用于输入特征图中的每个像素点,以产生加权特征图。

具体来说,CA注意力机制包括两个步骤通道特征提取通道注意力计算。在通道特征提取阶段,我们使用一个全局平均池化层来计算每个通道的平均值和最大值,然后将它们连接起来并通过一个全连接层来产生通道特征。在通道注意力计算阶段,我们使用一个sigmoid函数来将通道特征映射到[0,1]范围内,并将其应用于输入特征图中的每个像素点,以产生加权特征图。

其原理如下:👇

  1. 输入特征经过卷积等操作得到中间特征表示。
  2. 中间特征表示经过两个并行的操作:全局平均池化和全局最大池化,得到全局特征描述。
  3. 全局特征描述通过两个全连接层生成注意力权重。
  4. 注意力权重与中间特征表示相乘,得到加权后的特征表示。
  5. 加权后的特征表示经过适当的调整(如残差连接)后,作为下一层的输入。

CA注意力的实现如下图所示,可以认为分为两个并行阶段:

将输入特征图分别在为宽度高度两个方向分别进行全局平均池化,分别获得在宽度和高度两个方向的特征图。假设输入进来的特征层的形状为[C, H, W],在经过宽方向的平均池化后,获得的特征层shape为[C, H, 1],此时我们将特征映射到了高维度上;在经过高方向的平均池化后,获得的特征层shape为[C, 1, W],此时我们将特征映射到了宽维度上。

然后将两个并行阶段合并,将宽和高转置到同一个维度,然后进行堆叠,将宽高特征合并在一起,此时我们获得的特征层为:[C, 1, H+W],利用卷积+标准化+激活函数获得特征。

之后再次分开为两个并行阶段,再将宽高分开成为:[C, 1, H][C, 1, W],之后进行转置。获得两个特征层[C, H, 1][C, 1, W]

然后利用1x1卷积调整通道数后取sigmoid获得宽高维度上的注意力情况,乘上原有的特征就是CA注意力机制。

加入CA注意力机制的好处包括:

  1. 增强特征表达:CA注意力机制能够自适应地选择和调整不同通道的特征权重,从而更好地表达输入数据。它可以帮助模型发现和利用输入数据中重要的通道信息,提高特征的判别能力和区分性。
  2. 减少冗余信息:通过抑制不重要的通道,CA注意力机制可以减少输入数据中的冗余信息,提高模型对关键特征的关注度。这有助于降低模型的计算复杂度,并提高模型的泛化能力。
  3. 提升模型性能:加入CA注意力机制可以显著提高模型在多通道输入数据上的性能。它能够帮助模型更好地捕捉到通道之间的相关性和依赖关系,从而提高模型对输入数据的理解能力。

综上所述,加入CA注意力机制可以有效地增强模型对多通道输入数据的建模能力,提高模型性能和泛化能力。它在图像处理、视频分析等任务中具有重要的应用价值。✅

论文题目:《Coordinate Attention for Efficient Mobile Network Design》

论文地址:  https://arxiv.org/abs/2103.02907

代码实现:  houqb/CoordAttention首页 - GitCode


🚀2.网络结构

本文的改进是基于YOLOv8,关于其网络结构具体如下图所示:

YOLOv8官方仓库地址:

GitHub - ultralytics/ultralytics: NEW - YOLOv8 🚀 in PyTorch > ONNX > OpenVINO > CoreML > TFLite


🚀3.添加步骤

针对本文的改进,具体步骤如下所示:👇

步骤1:conv.py文件修改

步骤2:__init__.py文件修改

步骤3:tasks.py文件修改

步骤4:创建自定义yaml文件

步骤5:新建train.py文件

步骤6:模型训练测试


🚀4.改进方法

🍀🍀步骤1:conv.py文件修改

在源码中找到conv.py文件,具体位置是ultralytics/nn/modules/conv.py,然后将CA注意力机制模块代码添加到conv.py文件末尾位置。

CA注意力机制模块代码:

# CA注意力机制代码
# By CSDN 小哥谈
import torch
import torch.nn as nn
import torch.nn.functional as Fclass h_sigmoid(nn.Module):def __init__(self, inplace=True):super(h_sigmoid, self).__init__()self.relu = nn.ReLU6(inplace=inplace)def forward(self, x):return self.relu(x + 3) / 6class h_swish(nn.Module):def __init__(self, inplace=True):super(h_swish, self).__init__()self.sigmoid = h_sigmoid(inplace=inplace)def forward(self, x):return x * self.sigmoid(x)class CoordAtt(nn.Module):def __init__(self, inp, reduction=32):super(CoordAtt, self).__init__()self.pool_h = nn.AdaptiveAvgPool2d((None, 1))self.pool_w = nn.AdaptiveAvgPool2d((1, None))mip = max(8, inp // reduction)self.conv1 = nn.Conv2d(inp, mip, kernel_size=1, stride=1, padding=0)self.bn1 = nn.BatchNorm2d(mip)self.act = h_swish()self.conv_h = nn.Conv2d(mip, inp, kernel_size=1, stride=1, padding=0)self.conv_w = nn.Conv2d(mip, inp, kernel_size=1, stride=1, padding=0)def forward(self, x):identity = xn, c, h, w = x.size()x_h = self.pool_h(x)x_w = self.pool_w(x).permute(0, 1, 3, 2)y = torch.cat([x_h, x_w], dim=2)y = self.conv1(y)y = self.bn1(y)y = self.act(y)x_h, x_w = torch.split(y, [h, w], dim=2)x_w = x_w.permute(0, 1, 3, 2)a_h = self.conv_h(x_h).sigmoid()a_w = self.conv_w(x_w).sigmoid()out = identity * a_w * a_hreturn out
🍀🍀步骤2:__init__.py文件修改

在源码中找到__init__.py文件,具体位置是ultralytics/nn/modules/__init__.py

修改1:加入CoordAtt,具体如下图所示:

修改2:加入CoordAtt,具体如下图所示:

🍀🍀步骤3:tasks.py文件修改

在源码中找到tasks.py文件,具体位置是ultralytics/nn/tasks.py

修改1:在下图所示位置导入类名CoordAtt

修改2:找到parse_model函数(736行左右),在下图中所示位置添加如下代码。

# -----CA注意力机制--------elif m in {CoordAtt}:args=[ch[f],*args]# --------end------------

具体添加位置如下图所示:

🍀🍀步骤4:创建自定义yaml文件

在源码ultralytics/cfg/models/v8目录下创建yaml文件,并命名为:yolov8_CA.yaml。具体如下图所示:

yolov8_CA.yaml文件完整代码如下所示:

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'# [depth, width, max_channels]n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPss: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPsm: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPsl: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPsx: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs# YOLOv8.0n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2- [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4- [-1, 3, C2f, [128, True]]- [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8- [-1, 6, C2f, [256, True]]- [-1,1,CoordAtt,[]]- [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16- [-1, 6, C2f, [512, True]]- [-1,1,CoordAtt,[]]- [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32- [-1, 3, C2f, [1024, True]]- [-1,1,CoordAtt,[]]- [-1, 1, SPPF, [1024, 5]]  # 9# YOLOv8.0n head
head:- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 8], 1, Concat, [1]]  # cat backbone P4- [-1, 3, C2f, [512]]  # 12- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 5], 1, Concat, [1]]  # cat backbone P3- [-1, 3, C2f, [256]]  # 15 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]]- [[-1, 15], 1, Concat, [1]]  # cat head P4- [-1, 3, C2f, [512]]  # 18 (P4/16-medium)- [-1, 1, Conv, [512, 3, 2]]- [[-1, 12], 1, Concat, [1]]  # cat head P5- [-1, 3, C2f, [1024]]  # 21 (P5/32-large)- [[18, 21, 24], 1, Detect, [nc]]  # Detect(P3, P4, P5)
🍀🍀步骤5:新建train.py文件

在源码根目录下新建train.py文件,文件完整代码如下所示:

from ultralytics import YOLO# Load a model
model = YOLO(r'C:\Users\Lenovo\PycharmProjects\ultralytics-main\ultralytics\cfg\models\v8\yolov8_CA.yaml')  # build a new model from YAML
model = YOLO('yolov8n.pt')  # load a pretrained model (recommended for training)
model = YOLO(r'C:\Users\Lenovo\PycharmProjects\ultralytics-main\ultralytics\cfg\models\v8\yolov8_CA.yaml').load('yolov8n.pt')  # build from YAML and transfer weights# Train the model
model.train(data=r'C:\Users\Lenovo\PycharmProjects\ultralytics-main\ultralytics\cfg\datasets\helmet.yaml', epochs=100, imgsz=640)

注意:一定要用绝对路径,以防发生报错。

🍀🍀步骤6:模型训练测试

train.py文件,点击“运行”,在作者自制的安全帽佩戴检测数据集上,模型可以正常训练。

模型训练过程: 

模型训练结果:


这篇关于注意力机制篇 | YOLOv8改进之添加CA注意力机制的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/824041

相关文章

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、

Go语言并发之通知退出机制的实现

《Go语言并发之通知退出机制的实现》本文主要介绍了Go语言并发之通知退出机制的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1、通知退出机制1.1 进程/main函数退出1.2 通过channel退出1.3 通过cont

Spring Boot 中的默认异常处理机制及执行流程

《SpringBoot中的默认异常处理机制及执行流程》SpringBoot内置BasicErrorController,自动处理异常并生成HTML/JSON响应,支持自定义错误路径、配置及扩展,如... 目录Spring Boot 异常处理机制详解默认错误页面功能自动异常转换机制错误属性配置选项默认错误处理

Java中的xxl-job调度器线程池工作机制

《Java中的xxl-job调度器线程池工作机制》xxl-job通过快慢线程池分离短时与长时任务,动态降级超时任务至慢池,结合异步触发和资源隔离机制,提升高频调度的性能与稳定性,支撑高并发场景下的可靠... 目录⚙️ 一、调度器线程池的核心设计 二、线程池的工作流程 三、线程池配置参数与优化 四、总结:线程

Android ClassLoader加载机制详解

《AndroidClassLoader加载机制详解》Android的ClassLoader负责加载.dex文件,基于双亲委派模型,支持热修复和插件化,需注意类冲突、内存泄漏和兼容性问题,本文给大家介... 目录一、ClassLoader概述1.1 类加载的基本概念1.2 android与Java Class

Spring事务传播机制最佳实践

《Spring事务传播机制最佳实践》Spring的事务传播机制为我们提供了优雅的解决方案,本文将带您深入理解这一机制,掌握不同场景下的最佳实践,感兴趣的朋友一起看看吧... 目录1. 什么是事务传播行为2. Spring支持的七种事务传播行为2.1 REQUIRED(默认)2.2 SUPPORTS2

MySQL中的锁机制详解之全局锁,表级锁,行级锁

《MySQL中的锁机制详解之全局锁,表级锁,行级锁》MySQL锁机制通过全局、表级、行级锁控制并发,保障数据一致性与隔离性,全局锁适用于全库备份,表级锁适合读多写少场景,行级锁(InnoDB)实现高并... 目录一、锁机制基础:从并发问题到锁分类1.1 并发访问的三大问题1.2 锁的核心作用1.3 锁粒度分

Redis的持久化之RDB和AOF机制详解

《Redis的持久化之RDB和AOF机制详解》:本文主要介绍Redis的持久化之RDB和AOF机制,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录概述RDB(Redis Database)核心原理触发方式手动触发自动触发AOF(Append-Only File)核

PostgreSQL中MVCC 机制的实现

《PostgreSQL中MVCC机制的实现》本文主要介绍了PostgreSQL中MVCC机制的实现,通过多版本数据存储、快照隔离和事务ID管理实现高并发读写,具有一定的参考价值,感兴趣的可以了解一下... 目录一 MVCC 基本原理python1.1 MVCC 核心概念1.2 与传统锁机制对比二 Postg

Maven 配置中的 <mirror>绕过 HTTP 阻断机制的方法

《Maven配置中的<mirror>绕过HTTP阻断机制的方法》:本文主要介绍Maven配置中的<mirror>绕过HTTP阻断机制的方法,本文给大家分享问题原因及解决方案,感兴趣的朋友一... 目录一、问题场景:升级 Maven 后构建失败二、解决方案:通过 <mirror> 配置覆盖默认行为1. 配置示