自动微分运算TORCH.AUTOGRAD

2024-03-18 23:20

本文主要是介绍自动微分运算TORCH.AUTOGRAD,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Tensor、函数和计算图

反向传播算法中,模型参数根据相对于每个给定参数的损失函数的梯度来调整。

为了计算这些梯度,PyTorch 有一个内置的微分运算引擎叫 torch.autograd。它支持对任何计算图自动计算梯度。

考虑一个最简单的单层神经网络,它有输入值 x、参数 w 和 b、和一些损失函数。它可以在 PyTorch 中这么定义:
在这里插入图片描述

import torchx = torch.ones(5)  # input tensor
y = torch.zeros(3)  # expected output
w = torch.randn(5, 3, requires_grad=True)
b = torch.randn(3, requires_grad=True)
z = torch.matmul(x, w)+b
loss = torch.nn.functional.binary_cross_entropy_with_logits(z, y)print(f"Gradient function for z = {z.grad_fn}")
print(f"Gradient function for loss = {loss.grad_fn}")
#反向传播函数的一个引用保存在tensor的 grad_fn 的属性中。

为了优化神经网络中的参数,我们需要对参数计算损失函数的导数。要计算这些导数,我们调用loss.backward(),然后从 w.grad 和 b.grad 中获取值。

loss.backward()
print(w.grad)
print(b.grad)

注意:

  • 我们只能从计算图中将 require_grad 设置为 True 的叶子结点获取 grad 属性。对于计算图中的其他节点,梯度不可获取。
  • 在给定的计算图中,出于性能原因我们只能用 backward 进行一次梯度计算。如果我们想要对同一张计算图做几次 backward 调用,我们需要在 backward 调用时传递 retain_graph=True 参数。

禁用梯度追踪

默认情况下,所有设置 requires_grad=True 的tensor会追踪它的计算历史并支持梯度计算。但是也有我们并不需要这么做的场景,比如,当我们已经训练了模型且只想对一些输入数据应用的时候,比如我们只想做沿着网络的前向计算。我们可以通过用 torch.no_grad 包裹我们的计算代码块来停止追踪计算。

z = torch.matmul(x, w)+b
print(z.requires_grad)with torch.no_grad():z = torch.matmul(x, w)+bprint(z.requires_grad)

另一种取得同样效果的方法是在tensor上使用 detach() 方法。

z = torch.matmul(x, w)+b
z_det = z.detach()
print(z_det.requires_grad)

你想要禁用梯度追踪的原因可能是:

  • 为了把你神经网络中的某些参数标记为冻结参数(frozen parameters)
  • 为了在你只做前向传递的时候加快计算速度,因为在不追踪梯度的tensor上进行的运算会更加高效。

计算图的更多内容

从概念上来说,autograd 在一个由函数(Function)对象构成的有向无环图中保持一份数据(tensor)以及全部执行的操作(以及产生的新tensor)的记录。在这个有向无环图(DAG)中,叶子节点是输入tensor,根节点是输出tensor。通过从根节点到叶子节点地追踪这个图,你可以用链式法则自动计算梯度。

在前向传递中,autograd 同时做两件事:

  • 运行指定的操作来计算、生成一个tensor
  • 维持这次运算在有向无环图中的梯度函数

当对有向无环图的根节点调用 .backward() 方法时,反向传递就开始了。然后 autograd 会:

  • 从每个 .grad_fn 中计算梯度
  • 在对应tensor的 .grad 属性中累计它们
  • 应用链式法则,一路传播到叶子tensor。

注意: PyTorch 中的有向无环图是动态的: 一个重要的观察是这个图是从零重建的;每次 .backward() 调用之后,autograd 都会开始构建一张新图。这一点允许你在模型中使用流控制语句;如果需要的话,你可以在每次迭代中改变结构、大小和和运算。

这篇关于自动微分运算TORCH.AUTOGRAD的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/824002

相关文章

一文详解MySQL如何设置自动备份任务

《一文详解MySQL如何设置自动备份任务》设置自动备份任务可以确保你的数据库定期备份,防止数据丢失,下面我们就来详细介绍一下如何使用Bash脚本和Cron任务在Linux系统上设置MySQL数据库的自... 目录1. 编写备份脚本1.1 创建并编辑备份脚本1.2 给予脚本执行权限2. 设置 Cron 任务2

MyBatis Plus 中 update_time 字段自动填充失效的原因分析及解决方案(最新整理)

《MyBatisPlus中update_time字段自动填充失效的原因分析及解决方案(最新整理)》在使用MyBatisPlus时,通常我们会在数据库表中设置create_time和update... 目录前言一、问题现象二、原因分析三、总结:常见原因与解决方法对照表四、推荐写法前言在使用 MyBATis

Python使用smtplib库开发一个邮件自动发送工具

《Python使用smtplib库开发一个邮件自动发送工具》在现代软件开发中,自动化邮件发送是一个非常实用的功能,无论是系统通知、营销邮件、还是日常工作报告,Python的smtplib库都能帮助我们... 目录代码实现与知识点解析1. 导入必要的库2. 配置邮件服务器参数3. 创建邮件发送类4. 实现邮件

C/C++中OpenCV 矩阵运算的实现

《C/C++中OpenCV矩阵运算的实现》本文主要介绍了C/C++中OpenCV矩阵运算的实现,包括基本算术运算(标量与矩阵)、矩阵乘法、转置、逆矩阵、行列式、迹、范数等操作,感兴趣的可以了解一下... 目录矩阵的创建与初始化创建矩阵访问矩阵元素基本的算术运算 ➕➖✖️➗矩阵与标量运算矩阵与矩阵运算 (逐元

Python使用pynput模拟实现键盘自动输入工具

《Python使用pynput模拟实现键盘自动输入工具》在日常办公和软件开发中,我们经常需要处理大量重复的文本输入工作,所以本文就来和大家介绍一款使用Python的PyQt5库结合pynput键盘控制... 目录概述:当自动化遇上可视化功能全景图核心功能矩阵技术栈深度效果展示使用教程四步操作指南核心代码解析

SpringBoot实现文件记录日志及日志文件自动归档和压缩

《SpringBoot实现文件记录日志及日志文件自动归档和压缩》Logback是Java日志框架,通过Logger收集日志并经Appender输出至控制台、文件等,SpringBoot配置logbac... 目录1、什么是Logback2、SpringBoot实现文件记录日志,日志文件自动归档和压缩2.1、

SpringCloud使用Nacos 配置中心实现配置自动刷新功能使用

《SpringCloud使用Nacos配置中心实现配置自动刷新功能使用》SpringCloud项目中使用Nacos作为配置中心可以方便开发及运维人员随时查看配置信息,及配置共享,并且Nacos支持配... 目录前言一、Nacos中集中配置方式?二、使用步骤1.使用$Value 注解2.使用@Configur

Golang实现Redis分布式锁(Lua脚本+可重入+自动续期)

《Golang实现Redis分布式锁(Lua脚本+可重入+自动续期)》本文主要介绍了Golang分布式锁实现,采用Redis+Lua脚本确保原子性,持可重入和自动续期,用于防止超卖及重复下单,具有一定... 目录1 概念应用场景分布式锁必备特性2 思路分析宕机与过期防止误删keyLua保证原子性可重入锁自动

python利用backoff实现异常自动重试详解

《python利用backoff实现异常自动重试详解》backoff是一个用于实现重试机制的Python库,通过指数退避或其他策略自动重试失败的操作,下面小编就来和大家详细讲讲如何利用backoff实... 目录1. backoff 库简介2. on_exception 装饰器的原理2.1 核心逻辑2.2

Java如何根据文件名前缀自动分组图片文件

《Java如何根据文件名前缀自动分组图片文件》一大堆文件(比如图片)堆在一个目录下,它们的命名规则遵循一定的格式,混在一起很难管理,所以本文小编就和大家介绍一下如何使用Java根据文件名前缀自动分组图... 目录需求背景分析思路实现代码输出结果知识扩展需求一大堆文件(比如图片)堆在一个目录下,它们的命名规