Unity3d 基于物理渲染Physically-Based Rendering之实现

2024-03-18 19:30

本文主要是介绍Unity3d 基于物理渲染Physically-Based Rendering之实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

根据前文的例子http://blog.csdn.net/wolf96/article/details/44172243(不弄超链接了审核太慢)弄一下真正的基于物理的渲染
逃了节课= =,弄了一下。
公式和之前的文章一样,这次加上cubeMap贴图,由于方便,就直接用surface shader了,因为不用求reflect方向,
之前也有这一篇文章说明surface shader中cubeMap的使用方法和实时反射的方法http://blog.csdn.net/wolf96/article/details/41939325
好了进入正题,前面提到了ops2的brdf方法,现在来看看ops2改进了的BRDF方法
 

这是他们给出的代码,求的是F(L,H)函数的值,其中g为gloss光泽度,NoV为NdotV,N、V等等的含义在前篇文章也讲过,rf0我们就让他为可控的外部变量。

复习一下Cook-Torrance光照模型求specular的方法
可以简单概括为这个公式
 
本次计算沿用上次方法,
 
但改用specular power变量_SP为gloss光泽度为本篇定义外部变量_GL控制,具体装换方法_SP = pow(8192, _GL)也就是specular power值为8192的gloss倍,借用8192这个已经调好的参数,也算是站在巨人的肩膀上了。


Ops2的开发人员称他们的brdf为Environment map pre-filtering
模拟了环境光照射
原文说明the environment map blurs much more linearly across the gloss range
Gloss的范围使环境贴图的模糊更加的的线性,接下来的例子我们就可以看到结果


首先我们定义出光照函数,具体算法与前篇相同不在此赘述。只是把F(L,H)函数BRDF改成上面经过改进的方法,代码如下:
		inline fixed4 LightingOps(SurfaceOps s, fixed3 lightDir, fixed3 viewDir, fixed atten){viewDir = normalize(viewDir);lightDir = normalize(lightDir);float3 H = normalize(lightDir + viewDir);s.Normal = normalize(s.Normal);float3 N = s.Normal;float _SP = pow(8192, _GL);float d = (_SP + 2) / (8 * PIE) * pow(dot(N, H), _SP);//	float f = _SC + (1 - _SC)*pow((1 - dot(H, lightDir)), 5);float f = EnvironmentBRDF(_GL, dot(N, viewDir), _R0F);float k = 2 / sqrt(PIE * (_SP + 2));float v = 1 / ((dot(N, lightDir)*(1 - k) + k)*(dot(N, viewDir)*(1 - k) + k));float spec = d*f*v;float4 c = float4(s.Albedo, 1);c.rgb += (_SC + (1.0 - _SC) * s.DeferredFresnel) * spec;//* light.rgb;c += spec*_SC;c.a = s.Alpha;return c;}



在surf函数中我们要解码cubeMap传值给light函数,再此注意,我们用的不是texCUBE而是texCUBElod,看了函数名就知道不仅解出颜色,而且也控制lod,lod为level of detail,细节程度,我们通过控制他的第二个参数的w值来控制细节,通过这个我们能改变他的粗糙度,这也是基于物理的渲染的灵魂所在,我们要使光泽度gloss越低越粗糙。我们定义一个外部变量_nMips来控制,从而调试成我们想要的效果。
在surf函数中也需要计算BRDF,为了控制light中的specular比重,使之更加真实

		void surf(Input IN, inout SurfaceOps o) {half4 c = tex2D(_MainTex, IN.uv_MainTex) * _MainTint;o.Emission = texCUBElod(_Cubemap, float4(IN.worldRefl, _nMips - _GL*_nMips)).rgb * _ReflAmount;float cosT = dot(IN.viewDir, IN.worldNormal);//	c = (1 - spec)* c;float F = EnvironmentBRDF(_GL, dot(IN.worldNormal, IN.viewDir), _R0F);o.DeferredFresnel = F;o.Albedo = c.rgb;o.Alpha = c.a;}



效果如下:

 
我又做了各种实验,根据前篇改变了NDF函数
这是phong分布函数
 
Beckmann分布函数,他们都不一样,仔细比对就会发现Beckmann的高光比较强,比较突兀
 
Torrance-Reitz(GXX)分布函数
 
结果发现ops2的效果还是最好的,其次是Torrance-Reitz
再来个全家福

给出ops2的全部代码,其它的根据前篇代码带入更改即可
Shader "Custom/surface_cube_new ops" {Properties{_MainTex("Base (RGB)", 2D) = "white" {}_MainTint("Diffuse Color", Color) = (1, 1, 1, 1)_Cubemap("CubeMap", CUBE) = ""{}_ReflAmount("Reflection Amount", Range(0.01, 1)) = 0.5_SC("Specular Color", Color) = (1, 1, 1, 1)_GL("gloss", Range(0, 1)) = 0.5_R0F("R0F", Range(0, 1)) = 0.5_nMips("nMipsF", Range(0, 5)) = 0.5
}SubShader{Tags{ "RenderType" = "Opaque" }LOD 400CGPROGRAM
#pragma surface surf Ops  noambient
#pragma glsl
#pragma target 3.0sampler2D _MainTex;samplerCUBE _Cubemap;float4 _MainTint;float _ReflAmount;float4 _SC;float _nMips;float _GL;float _R0F;struct SurfaceOps{fixed3 Albedo;fixed3 Normal;fixed3 Emission;fixed3 Specular;fixed Gloss;fixed Alpha;half DeferredFresnel;};struct Input{float2 uv_MainTex;float3 worldPos;float3 viewDir;float3 worldNormal;float3 worldRefl;worldRefl:即为世界空间的反射向量///内置的worldRefl 来做立方图反射(cubemap reflection)};
#define PIE 3.1415926535
#define E 2.71828float3 EnvironmentBRDF(float g, float NoV, float3 rf0){float4 t = float4(1 / 0.96, 0.475, (0.0275 - 0.25 * 0.04) / 0.96, 0.25);t *= float4(g, g, g, g);t += float4(0, 0, (0.015 - 0.75 * 0.04) / 0.96, 0.75);float a0 = t.x * min(t.y, exp2(-9.28 * NoV)) + t.z;float a1 = t.w;return saturate(a0 + rf0 * (a1 - a0));}inline fixed4 LightingOps(SurfaceOps s, fixed3 lightDir, fixed3 viewDir, fixed atten){viewDir = normalize(viewDir);lightDir = normalize(lightDir);float3 H = normalize(lightDir + viewDir);s.Normal = normalize(s.Normal);float3 N = s.Normal;float _SP = pow(8192, _GL);float d = (_SP + 2) / (8 * PIE) * pow(dot(N, H), _SP);//	float f = _SC + (1 - _SC)*pow((1 - dot(H, lightDir)), 5);float f = EnvironmentBRDF(_GL, dot(N, viewDir), _R0F);float k = 2 / sqrt(PIE * (_SP + 2));float v = 1 / ((dot(N, lightDir)*(1 - k) + k)*(dot(N, viewDir)*(1 - k) + k));float spec = d*f*v;float4 c = float4(s.Albedo, 1);c.rgb += (_SC + (1.0 - _SC) * s.DeferredFresnel) * spec;//* light.rgb;c += spec*_SC;c.a = s.Alpha;return c;}void surf(Input IN, inout SurfaceOps o) {half4 c = tex2D(_MainTex, IN.uv_MainTex) * _MainTint;o.Emission = texCUBElod(_Cubemap, float4(IN.worldRefl, _nMips - _GL*_nMips)).rgb * _ReflAmount;float cosT = dot(IN.viewDir, IN.worldNormal);//	c = (1 - spec)* c;float F = EnvironmentBRDF(_GL, dot(IN.worldNormal, IN.viewDir), _R0F);o.DeferredFresnel = F;o.Albedo = c.rgb;o.Alpha = c.a;}ENDCG}FallBack "Diffuse"
}


                                                            ----by wolf96 http://blog.csdn.net/wolf96

这篇关于Unity3d 基于物理渲染Physically-Based Rendering之实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/823404

相关文章

Java实现字节字符转bcd编码

《Java实现字节字符转bcd编码》BCD是一种将十进制数字编码为二进制的表示方式,常用于数字显示和存储,本文将介绍如何在Java中实现字节字符转BCD码的过程,需要的小伙伴可以了解下... 目录前言BCD码是什么Java实现字节转bcd编码方法补充总结前言BCD码(Binary-Coded Decima

SpringBoot全局域名替换的实现

《SpringBoot全局域名替换的实现》本文主要介绍了SpringBoot全局域名替换的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录 项目结构⚙️ 配置文件application.yml️ 配置类AppProperties.Ja

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Java实现将HTML文件与字符串转换为图片

《Java实现将HTML文件与字符串转换为图片》在Java开发中,我们经常会遇到将HTML内容转换为图片的需求,本文小编就来和大家详细讲讲如何使用FreeSpire.DocforJava库来实现这一功... 目录前言核心实现:html 转图片完整代码场景 1:转换本地 HTML 文件为图片场景 2:转换 H

C#使用Spire.Doc for .NET实现HTML转Word的高效方案

《C#使用Spire.Docfor.NET实现HTML转Word的高效方案》在Web开发中,HTML内容的生成与处理是高频需求,然而,当用户需要将HTML页面或动态生成的HTML字符串转换为Wor... 目录引言一、html转Word的典型场景与挑战二、用 Spire.Doc 实现 HTML 转 Word1

C#实现一键批量合并PDF文档

《C#实现一键批量合并PDF文档》这篇文章主要为大家详细介绍了如何使用C#实现一键批量合并PDF文档功能,文中的示例代码简洁易懂,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言效果展示功能实现1、添加文件2、文件分组(书签)3、定义页码范围4、自定义显示5、定义页面尺寸6、PDF批量合并7、其他方法

SpringBoot实现不同接口指定上传文件大小的具体步骤

《SpringBoot实现不同接口指定上传文件大小的具体步骤》:本文主要介绍在SpringBoot中通过自定义注解、AOP拦截和配置文件实现不同接口上传文件大小限制的方法,强调需设置全局阈值远大于... 目录一  springboot实现不同接口指定文件大小1.1 思路说明1.2 工程启动说明二 具体实施2

Python实现精确小数计算的完全指南

《Python实现精确小数计算的完全指南》在金融计算、科学实验和工程领域,浮点数精度问题一直是开发者面临的重大挑战,本文将深入解析Python精确小数计算技术体系,感兴趣的小伙伴可以了解一下... 目录引言:小数精度问题的核心挑战一、浮点数精度问题分析1.1 浮点数精度陷阱1.2 浮点数误差来源二、基础解决

Java实现在Word文档中添加文本水印和图片水印的操作指南

《Java实现在Word文档中添加文本水印和图片水印的操作指南》在当今数字时代,文档的自动化处理与安全防护变得尤为重要,无论是为了保护版权、推广品牌,还是为了在文档中加入特定的标识,为Word文档添加... 目录引言Spire.Doc for Java:高效Word文档处理的利器代码实战:使用Java为Wo

Java实现远程执行Shell指令

《Java实现远程执行Shell指令》文章介绍使用JSch在SpringBoot项目中实现远程Shell操作,涵盖环境配置、依赖引入及工具类编写,详解分号和双与号执行多指令的区别... 目录软硬件环境说明编写执行Shell指令的工具类总结jsch(Java Secure Channel)是SSH2的一个纯J