计算方法实验1:圆形镜面成像问题

2024-03-18 12:36

本文主要是介绍计算方法实验1:圆形镜面成像问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

二维平面上的镜面反射示意图
在这里插入图片描述
在这里插入图片描述

Algorithm Description

T ( c o s θ , s i n θ ) T(cos\theta,sin\theta) T(cosθ,sinθ),则有
P T + Q T = ( P x − c o s θ ) 2 + s i n 2 θ + ( Q x − c o s θ ) 2 + ( Q y − s i n θ ) 2 PT+QT=\sqrt{(P_x-cos\theta)^2+sin^2\theta}+\sqrt{(Q_x-cos\theta)^2+(Q_y-sin\theta)^2} PT+QT=(Pxcosθ)2+sin2θ +(Qxcosθ)2+(Qysinθ)2
P T + Q T = P x 2 − 2 P x c o s θ + 1 + Q x 2 + Q y 2 + 1 − 2 Q x c o s θ − 2 Q y s i n θ PT+QT=\sqrt{P_x^2-2P_xcos\theta+1}+\sqrt{Q_x^2+Q_y^2+1-2Q_xcos\theta-2Q_ysin\theta} PT+QT=Px22Pxcosθ+1 +Qx2+Qy2+12Qxcosθ2Qysinθ
由费马原理,光线沿 P T + Q T PT+QT PT+QT最短的路径传播,因此只需对上式求导求极小值点。关于 θ \theta θ求导得
P x s i n θ P x 2 − 2 P x c o s θ + 1 + Q x s i n θ − Q y c o s θ Q x 2 + Q y 2 + 1 − 2 Q x c o s θ − 2 Q y s i n θ \frac{P_xsin\theta}{\sqrt{P_x^2-2P_xcos\theta+1}}+\frac{Q_xsin\theta-Q_ycos\theta}{\sqrt{Q_x^2+Q_y^2+1-2Q_xcos\theta-2Q_ysin\theta}} Px22Pxcosθ+1 Pxsinθ+Qx2+Qy2+12Qxcosθ2Qysinθ QxsinθQycosθ
故只需用二分法解非线性方程
P x s i n θ Q x 2 + Q y 2 + 1 − 2 Q x c o s θ − 2 Q y s i n θ + ( Q x s i n θ − Q y c o s θ ) P x 2 − 2 P x c o s θ + 1 = 0 P_xsin\theta\sqrt{Q_x^2+Q_y^2+1-2Q_xcos\theta-2Q_ysin\theta}+(Q_xsin\theta-Q_ycos\theta)\sqrt{P_x^2-2P_xcos\theta+1}=0 PxsinθQx2+Qy2+12Qxcosθ2Qysinθ +(QxsinθQycosθ)Px22Pxcosθ+1 =0
T x = c o s θ T_x=cos\theta Tx=cosθ
T y = s i n θ T_y=sin\theta Ty=sinθ
由对称性易知
R x = 2 Q y − Q x t a n θ − k Q x + k ( 2 T x − Q x ) − 2 T y k − t a n θ Rx=\frac{2Q_y-Qxtan\theta -kQ_x +k(2Tx - Qx) - 2Ty}{k-tan\theta} Rx=ktanθ2QyQxtanθkQx+k(2TxQx)2Ty
R y = Q y − ( Q x − R x ) θ Ry=Qy-(Qx - Rx)\theta Ry=Qy(QxRx)θ

Code

#include<iostream>
#include<cmath>
#include <iomanip>
using namespace std;int main(int argc, char *argv[])
{if(argc != 4) {cout << "Usage: " << argv[0] << " <Px> <Qx> <Qy>\n";return 1;}long double Px = stold(argv[1]);long double Qx = stold(argv[2]);long double Qy = stold(argv[3]);if(Px >= -1 || Qx >= 0 || Qy <= 0 || Qx * Qx + Qy * Qy <= 1) {cout << "输入错误,Px应该小于-1,Qx应该小于0,Qy应该大于0,Qx^2+Qy^2应该大于1\n";return 1;}long double Tx = 0;long double Ty = 0;long double theta = 0;long double low = 3.14159265358979323 , high = 1.570796326794896;long double k = 0;while(1){theta = (low + high) / 2;long double eq1 = Px * sin(theta);long double eq2 = sqrt(Qx * Qx + Qy * Qy +1 - 2 * Qx * cos(theta) - 2 * Qy * sin(theta));long double eq3 = (Qx * sin(theta) - Qy * cos(theta));long double eq4 = sqrt(Px * Px -2 * Px * cos(theta) + 1);long double res = eq1 * eq2 + eq3 * eq4;long double absres = abs(res);if(absres <= 1e-7){Tx = cos(theta);Ty = sin(theta);k = 1 / tan(3.14159265358979323 - theta);break;}else if(res > 0){low = theta;}else{high = theta;}}long double eq5 = 2 * Qy - Qx * tan(theta) + k * (2 * Tx - Qx) - 2 * Ty;long double eq6 = k - tan(theta); long double Rx = eq5 / eq6;long double Ry = Qy - tan(theta) * (Qx - Rx);cout << "T = (" << fixed << setprecision(6) << Tx << " , " << fixed << setprecision(6) << Ty << ") , R = (" << fixed << setprecision(6) << Rx << " , " << fixed << setprecision(6) << Ry << ")";return 0;
}

Results

P = ( − 2 , 0 ) , Q = ( − 1 , 1 ) : T = ( − 0.885670 , 0.464316 ) , R = ( − 0.380057 , 0.674993 ) P = (-2, 0), Q = (-1, 1):T = (-0.885670, 0.464316), R = (-0.380057, 0.674993) P=(2,0),Q=(1,1):T=(0.885670,0.464316),R=(0.380057,0.674993)

P = ( − 10 , 0 ) , Q = ( − 2 , 1 ) : T = ( − 0.959312 , 0.282350 ) , R = ( 0.304214 , 0.321811 ) P = (-10, 0), Q = (-2, 1): T = (-0.959312, 0.282350), R = (0.304214, 0.321811) P=(10,0),Q=(2,1):T=(0.959312,0.282350),R=(0.304214,0.321811)

P = ( − 1.000001 , 0 ) , Q = ( − 2 , 2 ) : T = ( − 1.000000 , 0.000002 ) , R = ( 0.000007 , 1.999996 ) P = (-1.000001, 0), Q = (-2, 2):T = (-1.000000 , 0.000002) , R = (0.000007 , 1.999996) P=(1.000001,0),Q=(2,2):T=(1.000000,0.000002),R=(0.000007,1.999996)

P = ( − 2 , 0 ) , Q = ( − 1 , 0.000001 ) : T = ( − 1.000000 , 0.000001 ) , R = ( − 1.000000 , 0.000001 ) P = (-2, 0), Q = (-1, 0.000001):T = (-1.000000 , 0.000001) , R = (-1.000000 , 0.000001) P=(2,0),Q=(1,0.000001):T=(1.000000,0.000001),R=(1.000000,0.000001)

P = ( − 2.33 , 0 ) , Q = ( − 3 , 1 ) : T = ( − 0.989279 , 0.146038 ) , R = ( 1.182424 , 0.382590 ) P = (-2.33, 0), Q = (-3, 1):T = (-0.989279 , 0.146038) , R = (1.182424 , 0.382590) P=(2.33,0),Q=(3,1):T=(0.989279,0.146038),R=(1.182424,0.382590)

P = ( − 3 , 0 ) , Q = ( − 1 , 0.5 ) : T = ( − 0.922615 , 0.385721 ) , R = ( − 0.786920 , 0.410917 ) P = (-3, 0), Q = (-1, 0.5):T = (-0.922615 , 0.385721) , R = (-0.786920 , 0.410917) P=(3,0),Q=(1,0.5):T=(0.922615,0.385721),R=(0.786920,0.410917)

P = ( − 3 , 0 ) , Q = ( − 2 , 10 ) : T = ( − 0.827028 , 0.562160 ) , R = ( 8.380296 , 2.944148 ) P = (-3, 0), Q = (-2, 10):T = (-0.827028 , 0.562160) , R = (8.380296 , 2.944148) P=(3,0),Q=(2,10):T=(0.827028,0.562160),R=(8.380296,2.944148)

P = ( − 3 , 0 ) , Q = ( − 3 , 1 ) : T = ( − 0.987408 , 0.158192 ) , R = ( 1.187435 , 0.329136 ) P = (-3, 0), Q = (-3, 1):T = (-0.987408 , 0.158192) , R = (1.187435 , 0.329136) P=(3,0),Q=(3,1):T=(0.987408,0.158192),R=(1.187435,0.329136)

P = ( − 10 , 0 ) , Q = ( − 2 , 1 ) : T = ( − 0.959312 , 0.282350 ) , R = ( 0.304214 , 0.321811 ) P = (-10, 0), Q = (-2, 1):T = (-0.959312 , 0.282350) , R = (0.304214 , 0.321811) P=(10,0),Q=(2,1):T=(0.959312,0.282350),R=(0.304214,0.321811)

P = ( − 1024 , 0 ) , Q = ( − 8 , 4 ) : T = ( − 0.970066 , 0.242842 ) , R = ( 7.000894 , 0.244735 ) P = (-1024, 0), Q = (-8, 4):T = (-0.970066 , 0.242842) , R = (7.000894 , 0.244735) P=(1024,0),Q=(8,4):T=(0.970066,0.242842),R=(7.000894,0.244735)

Conclusion

本实验提高精度的主要措施:

  1. 使用long double 类型;

  2. 用较多位数来表示 π \pi π

  3. 将含有除法的方程交叉相乘,通过乘法代替除法,以减少在求商时的误差;

  4. 在用二分法解非线性方程时,限制条件是结果的绝对值 ≤ 1 0 − 7 \leq10^{-7} 107

但由于本实验的方程较为复杂,含有三角函数、根式、平方等易造成误差放大的因素,暂时还未找到其他较好的减少误差的办法,但还尝试了另一种思路,叙述如下:

设OT的延长线交PQ于R,则由角平分线定理,有 Q T P T = Q R R P = Q y R y − 1 \frac{QT}{PT}=\frac{QR}{RP}=\frac{Q_y}{R_y}-1 PTQT=RPQR=RyQy1
T ( x , y ) , k = Q y Q x − P x T(x,y),k=\frac{Qy}{Qx-Px} T(x,y),k=QxPxQy,带入上述方程化简得:
Q y 2 ( k x − y ) 2 + k 2 P x 2 y 2 − 2 k Q y P x y ( k x − y ) k 2 P x 2 y 2 = Q y 2 + Q x 2 + 1 − 2 y Q y − 2 x Q x 1 + P x 2 − 2 x P x \frac{Q_y^2(kx-y)^2+k^2P_x^2y^2-2kQ_yPxy(kx-y)}{k^2Px^2y^2}=\frac{Q_y^2+Q_x^2+1-2yQ_y-2xQ_x}{1+P_x^2-2xP_x} k2Px2y2Qy2(kxy)2+k2Px2y22kQyPxy(kxy)=1+Px22xPxQy2+Qx2+12yQy2xQx
故只需用for循环遍历或二分法解非线性方程 ( Q y 2 ( k x − y ) 2 + k 2 P x 2 y 2 − 2 k Q y P x y ( k x − y ) ) ( 1 + P x 2 − 2 x P x ) − ( k 2 P x 2 y 2 ) ( Q y 2 + Q x 2 + 1 − 2 y Q y − 2 x Q x ) = 0 (Q_y^2(kx-y)^2+k^2P_x^2y^2-2kQ_yPxy(kx-y))(1+P_x^2-2xP_x)-(k^2Px^2y^2)(Q_y^2+Q_x^2+1-2yQ_y-2xQ_x)=0 (Qy2(kxy)2+k2Px2y22kQyPxy(kxy))(1+Px22xPx)(k2Px2y2)(Qy2+Qx2+12yQy2xQx)=0
y = 1 − x 2 y=\sqrt{1-x^2} y=1x2

由对称性易知
R x = Q x T y T x + T x ( 2 T x − Q x ) T y + 2 T y − 2 Q y T x T y + T y T x Rx=\frac{\frac{QxTy}{Tx} + \frac{Tx(2Tx - Qx)}{Ty} + 2Ty -2Qy}{\frac{Tx}{Ty}+\frac{Ty}{Tx}} Rx=TyTx+TxTyTxQxTy+TyTx(2TxQx)+2Ty2Qy
R y = Q y − T y T x ( Q x − R x ) Ry=Qy-\frac{Ty}{Tx(Qx - Rx)} Ry=QyTx(QxRx)Ty
但验证结果时发现,上述方法在遇到一些极端情况如 P = ( − 1.000001 , 0 ) , Q = ( − 2 , 2 ) P = (-1.000001, 0), Q = (-2, 2) P=(1.000001,0),Q=(2,2)时,中间的运算过程会出现极小的浮点数导致无法继续运算,所以这种思路在细节上仍有待改进。

这篇关于计算方法实验1:圆形镜面成像问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/822349

相关文章

MySQL 设置AUTO_INCREMENT 无效的问题解决

《MySQL设置AUTO_INCREMENT无效的问题解决》本文主要介绍了MySQL设置AUTO_INCREMENT无效的问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参... 目录快速设置mysql的auto_increment参数一、修改 AUTO_INCREMENT 的值。

关于跨域无效的问题及解决(java后端方案)

《关于跨域无效的问题及解决(java后端方案)》:本文主要介绍关于跨域无效的问题及解决(java后端方案),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录通用后端跨域方法1、@CrossOrigin 注解2、springboot2.0 实现WebMvcConfig

Go语言中泄漏缓冲区的问题解决

《Go语言中泄漏缓冲区的问题解决》缓冲区是一种常见的数据结构,常被用于在不同的并发单元之间传递数据,然而,若缓冲区使用不当,就可能引发泄漏缓冲区问题,本文就来介绍一下问题的解决,感兴趣的可以了解一下... 目录引言泄漏缓冲区的基本概念代码示例:泄漏缓冲区的产生项目场景:Web 服务器中的请求缓冲场景描述代码

Java死锁问题解决方案及示例详解

《Java死锁问题解决方案及示例详解》死锁是指两个或多个线程因争夺资源而相互等待,导致所有线程都无法继续执行的一种状态,本文给大家详细介绍了Java死锁问题解决方案详解及实践样例,需要的朋友可以参考下... 目录1、简述死锁的四个必要条件:2、死锁示例代码3、如何检测死锁?3.1 使用 jstack3.2

解决JSONField、JsonProperty不生效的问题

《解决JSONField、JsonProperty不生效的问题》:本文主要介绍解决JSONField、JsonProperty不生效的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录jsONField、JsonProperty不生效javascript问题排查总结JSONField

github打不开的问题分析及解决

《github打不开的问题分析及解决》:本文主要介绍github打不开的问题分析及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、找到github.com域名解析的ip地址二、找到github.global.ssl.fastly.net网址解析的ip地址三

MySQL版本问题导致项目无法启动问题的解决方案

《MySQL版本问题导致项目无法启动问题的解决方案》本文记录了一次因MySQL版本不一致导致项目启动失败的经历,详细解析了连接错误的原因,并提供了两种解决方案:调整连接字符串禁用SSL或统一MySQL... 目录本地项目启动报错报错原因:解决方案第一个:第二种:容器启动mysql的坑两种修改时区的方法:本地

springboot加载不到nacos配置中心的配置问题处理

《springboot加载不到nacos配置中心的配置问题处理》:本文主要介绍springboot加载不到nacos配置中心的配置问题处理,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录springboot加载不到nacos配置中心的配置两种可能Spring Boot 版本Nacos

Java中JSON格式反序列化为Map且保证存取顺序一致的问题

《Java中JSON格式反序列化为Map且保证存取顺序一致的问题》:本文主要介绍Java中JSON格式反序列化为Map且保证存取顺序一致的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未... 目录背景问题解决方法总结背景做项目涉及两个微服务之间传数据时,需要提供方将Map类型的数据序列化为co

如何解决Druid线程池Cause:java.sql.SQLRecoverableException:IO错误:Socket read timed out的问题

《如何解决Druid线程池Cause:java.sql.SQLRecoverableException:IO错误:Socketreadtimedout的问题》:本文主要介绍解决Druid线程... 目录异常信息触发场景找到版本发布更新的说明从版本更新信息可以看到该默认逻辑已经去除总结异常信息触发场景复