ICANN备稿时debug遇到的问题

2024-03-18 09:36
文章标签 debug 问题 遇到 icann 备稿

本文主要是介绍ICANN备稿时debug遇到的问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

包问题

  1. 装包:先用fastai
  2. 出现单击没有跳转的情况:安装pylance即可
  3. 出现了用pip3 uninstallpip3 list还有原来的numpy,然后用conda uninstall之后就行了。pip, pip3, conda这几个来回用。
    精度问题
    打印tensor数组自动保留后四位:
    是精度缩减了吗?其实是因为print访问的为_str_方法打印出来的小数只有四位,用torch.set_printoptions(precision=15)(设置小数精度显示)即可显示原来数据。
    visio图片转PDF
    overleaf插入去白边的Visio图:
    https://www.cnblogs.com/doubleyue/p/15684697.html
    如果使用visio,在保存为PDF图片时候点下选项,把打钩的都不选就好了

保存latest和best model函数

def main(if valid_loss < best_loss:is_best = Truebest_epoch = epochbest_prec = min(valid_loss,best_loss)save_checkpoint({'epoch': epoch + 1,'state_dict': model.state_dict(),'best_prec': best_prec,'optimizer': optimizer.state_dict(),}, is_best, fdir)def save_checkpoint(state, is_best, fdir):filepath = os.path.join(fdir, 'checkpoint.pth')torch.save(state, filepath) # latestif is_best: # bestshutil.copyfile(filepath, os.path.join(fdir, 'model_best.pth.tar'))

extra_repr
extra_repr 是 Python 中一种特殊的方法。在 PyTorch 中,它通常用于自定义类的字符串表示形式,特别是在打印对象时。当你使用 print 函数打印一个对象时,Python 会调用该对象的 str 方法来生成可读的字符串表示形式。但是,有时 str 方法可能不够详细或不够清晰,这时可以定义 extra_repr 方法来提供额外的信息。当你使用 print 函数打印对象时,Python 会检查是否定义了 extra_repr 方法,如果定义了,则会使用该方法返回的字符串来丰富对象的字符串表示形式。
return -> str一定要return的是string
例子:

class QuantReLU(nn.ReLU):def __init__(self, inplace: bool = False):super(QuantReLU, self).__init__(inplace)def extra_repr(self) -> str:return 'clipping threshold activation alpha: {:.3f}'.format(self.act_alpha)

当你print(QuantReLU)或者print的model里面含有他时,会输出:

Dummy(
(block): Sequential(
(0): Conv1d(12, 16, kernel_size=(5,), stride=(3,))
(1): QuantReLU(clipping threshold activation alpha: 7.832)
)
)

关于torch.size():
1.相加操作要掌握

import torchsize1 = torch.Size([3, 4])
size2 = torch.Size([5, 6, 7])# 将 size1 和 size2 进行相加操作
result_size = size1 + size2print(result_size)  # 输出: torch.Size([3, 4, 5, 6, 7])

2..shape返回的是torch.size()类型。
综合上述两点就可以写出以下代码:

spike_train = torch.zeros(membrane.shape[:1] + torch.Size([self.T]) + membrane.shape[1:],device=membrane.device)

state_dict
model.state_dict() 返回的是模型的参数字典,其中键是参数的名称,值是参数的张量
state_dict.pop(k) 是 Python 字典(dictionary)的一个方法,用于移除字典中键为 k 的项,并返回该项的值。

for key in checkpoint:print(key, checkpoint[key].shape)
for key in model.state_dict():print(key, model.state_dict()[key].size() or .shape)# 在 PyTorch 中,.size() 和 .shape 是等价的,两者都可以用于获取张量的形状信息。#conv1.weight 	 torch.Size([6, 3, 5, 5])
#conv1.bias 	 torch.Size([6])

原来是用的relu.thresh
要改成relu.up

keys = list(checkpoint.keys())
for key in keys:if 'thresh' in key:checkpoint[key[:-6] + 'up'] = checkpoint.pop(key)

state_dict.pop(k) 是 Python 字典(dictionary)的一个方法,用于移除字典中键为 k 的项,并返回该项的值。
由于在 Python 中字典的迭代器在遍历时不允许修改字典的结构,所以必须用keys来作为迭代。
例子二:

#Remove DataParallel wrapper 'module' 
for name in list(checkpoint['state_dict'].keys()):checkpoint['state_dict'][name[7:]] = checkpoint['state_dict'].pop(name)

torch.optim模块中的Optimizer优化器对象也存在一个state_dict对象,此处的state_dict字典对象包含state和param_groups的字典对象

for var_name in optimizer.state_dict():print(var_name,'\t',optimizer.state_dict()[var_name])
输出:
state 	 {}
param_groups 	 [{'lr': 0.001, 'momentum': 0.9, 'dampening': 0, 'weight_decay': 0, 'nesterov': False, 'params': [367949288, 367949432, 376459056, 381121808, 381121952, 381122024, 381121880, 381122168, 381122096, 381122312]}]    

网络,对不同网络层的操作
虽然表面上是说对网络以及网络层的操作,但本质上是对象和索引对象属性的问题。
有一些内置函数用来索引到对象属性:
内置函数: getattr(), setattr()

value = getattr(obj, 'attr') 
setattr(obj, 'attr', 42)

e.g.: 用于遍历索引到对象属性。

    for i in range(2, num_layers + 1):getattr(model, 'layer' + str(i)).idem = Truegetattr(snn, 'layer' + str(i)).idem = True

当没有sequential时:
print(net.fc2)
有sequential时:
print(net.fc[2])

梯度
torch.clamp是有梯度的,只有round函数需要单独考虑梯度(即写backward function)
在这里插入图片描述
round的梯度是和clip一样的。他俩都是treats the quantization and de-quantization function as if it were identity function in the clipping range and constant function outside the clipping range.

grad只要不低到0都是可以的,1e-4,1e-5,也会更新。lr * grad
alpha_new = alpha_old - learning_rate * grad_alpha

Bug
因为不懂optimizer原理犯的错误:
optimizer一定要在model settled 好之后再调用,因为有model.parameters()作为参数
这下对整个梯度的从开始到更新一轮应该比较了解了:

final_model #需要梯度的用parameter或tensor(require_grad)
optimizer = optim.Adam(final_model.parameters(), lr=0.0001)
model.train()
optimizer.zero_grad() #把optimizer存的grad清空
loss.backward() # 根据模型输出的损失值计算梯度。它会自动地沿着网络的参数计算梯度,并将梯度存储在参数的.grad属性中
nn.utils.clip_grad_norm_(model.parameters(), max_norm=10) # 会计算所有参数的梯度的范数,并根据指定的max_norm进行裁剪
optimizer.step() # 这一步是利用优化器来更新模型的参数。优化器根据梯度和指定的优化算法(如SGD、Adam等)来更新模型参数。它会使用loss.backward()计算得到的梯度来更新模型参数,通常使用学习率和其他超参数来控制更新的步长和方向。

优化器在训练过程中会存储并使用梯度来更新模型参数。每次调用optimizer.step()时,优化器会使用之前存储的梯度信息来更新模型参数。

0-d tensor 就是 scalar,不能输出他的shape

UserWarning: Detected call of lr_scheduler.step() before optimizer.step().

#scheduler.step() 不要放在这
train_acc, trian_loss= train_one_epoch(args, model, dset, optimizer, data_loader, epoch)
scheduler.step()

Loss
分类问题就无脑CE,比MSE要好。
nn.CrossEntropyLoss()=nn.LogSoftmax()+nn.NLLLoss().

optimizer
要手动将load下来的参数放到GPU上。

optimizer.load_state_dict(checkpoint['optimizer'])
for state in optimizer.state.values():for k, v in state.items():if isinstance(v, torch.Tensor):state[k] = v.cuda()

许愿第一次论文

这篇关于ICANN备稿时debug遇到的问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/821929

相关文章

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

Java 线程安全与 volatile与单例模式问题及解决方案

《Java线程安全与volatile与单例模式问题及解决方案》文章主要讲解线程安全问题的五个成因(调度随机、变量修改、非原子操作、内存可见性、指令重排序)及解决方案,强调使用volatile关键字... 目录什么是线程安全线程安全问题的产生与解决方案线程的调度是随机的多个线程对同一个变量进行修改线程的修改操

Redis出现中文乱码的问题及解决

《Redis出现中文乱码的问题及解决》:本文主要介绍Redis出现中文乱码的问题及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 问题的产生2China编程. 问题的解决redihttp://www.chinasem.cns数据进制问题的解决中文乱码问题解决总结

全面解析MySQL索引长度限制问题与解决方案

《全面解析MySQL索引长度限制问题与解决方案》MySQL对索引长度设限是为了保持高效的数据检索性能,这个限制不是MySQL的缺陷,而是数据库设计中的权衡结果,下面我们就来看看如何解决这一问题吧... 目录引言:为什么会有索引键长度问题?一、问题根源深度解析mysql索引长度限制原理实际场景示例二、五大解决

Springboot如何正确使用AOP问题

《Springboot如何正确使用AOP问题》:本文主要介绍Springboot如何正确使用AOP问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录​一、AOP概念二、切点表达式​execution表达式案例三、AOP通知四、springboot中使用AOP导出

Python中Tensorflow无法调用GPU问题的解决方法

《Python中Tensorflow无法调用GPU问题的解决方法》文章详解如何解决TensorFlow在Windows无法识别GPU的问题,需降级至2.10版本,安装匹配CUDA11.2和cuDNN... 当用以下代码查看GPU数量时,gpuspython返回的是一个空列表,说明tensorflow没有找到

解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘问题

《解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘问题》:本文主要介绍解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4... 目录未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘打开pom.XM

IDEA Maven提示:未解析的依赖项的问题及解决

《IDEAMaven提示:未解析的依赖项的问题及解决》:本文主要介绍IDEAMaven提示:未解析的依赖项的问题及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝... 目录IDEA Maven提示:未解析的依编程赖项例如总结IDEA Maven提示:未解析的依赖项例如

Redis分片集群、数据读写规则问题小结

《Redis分片集群、数据读写规则问题小结》本文介绍了Redis分片集群的原理,通过数据分片和哈希槽机制解决单机内存限制与写瓶颈问题,实现分布式存储和高并发处理,但存在通信开销大、维护复杂及对事务支持... 目录一、分片集群解android决的问题二、分片集群图解 分片集群特征如何解决的上述问题?(与哨兵模

SpringBoot+Redis防止接口重复提交问题

《SpringBoot+Redis防止接口重复提交问题》:本文主要介绍SpringBoot+Redis防止接口重复提交问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录前言实现思路代码示例测试总结前言在项目的使用使用过程中,经常会出现某些操作在短时间内频繁提交。例