ICANN备稿时debug遇到的问题

2024-03-18 09:36
文章标签 debug 问题 遇到 icann 备稿

本文主要是介绍ICANN备稿时debug遇到的问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

包问题

  1. 装包:先用fastai
  2. 出现单击没有跳转的情况:安装pylance即可
  3. 出现了用pip3 uninstallpip3 list还有原来的numpy,然后用conda uninstall之后就行了。pip, pip3, conda这几个来回用。
    精度问题
    打印tensor数组自动保留后四位:
    是精度缩减了吗?其实是因为print访问的为_str_方法打印出来的小数只有四位,用torch.set_printoptions(precision=15)(设置小数精度显示)即可显示原来数据。
    visio图片转PDF
    overleaf插入去白边的Visio图:
    https://www.cnblogs.com/doubleyue/p/15684697.html
    如果使用visio,在保存为PDF图片时候点下选项,把打钩的都不选就好了

保存latest和best model函数

def main(if valid_loss < best_loss:is_best = Truebest_epoch = epochbest_prec = min(valid_loss,best_loss)save_checkpoint({'epoch': epoch + 1,'state_dict': model.state_dict(),'best_prec': best_prec,'optimizer': optimizer.state_dict(),}, is_best, fdir)def save_checkpoint(state, is_best, fdir):filepath = os.path.join(fdir, 'checkpoint.pth')torch.save(state, filepath) # latestif is_best: # bestshutil.copyfile(filepath, os.path.join(fdir, 'model_best.pth.tar'))

extra_repr
extra_repr 是 Python 中一种特殊的方法。在 PyTorch 中,它通常用于自定义类的字符串表示形式,特别是在打印对象时。当你使用 print 函数打印一个对象时,Python 会调用该对象的 str 方法来生成可读的字符串表示形式。但是,有时 str 方法可能不够详细或不够清晰,这时可以定义 extra_repr 方法来提供额外的信息。当你使用 print 函数打印对象时,Python 会检查是否定义了 extra_repr 方法,如果定义了,则会使用该方法返回的字符串来丰富对象的字符串表示形式。
return -> str一定要return的是string
例子:

class QuantReLU(nn.ReLU):def __init__(self, inplace: bool = False):super(QuantReLU, self).__init__(inplace)def extra_repr(self) -> str:return 'clipping threshold activation alpha: {:.3f}'.format(self.act_alpha)

当你print(QuantReLU)或者print的model里面含有他时,会输出:

Dummy(
(block): Sequential(
(0): Conv1d(12, 16, kernel_size=(5,), stride=(3,))
(1): QuantReLU(clipping threshold activation alpha: 7.832)
)
)

关于torch.size():
1.相加操作要掌握

import torchsize1 = torch.Size([3, 4])
size2 = torch.Size([5, 6, 7])# 将 size1 和 size2 进行相加操作
result_size = size1 + size2print(result_size)  # 输出: torch.Size([3, 4, 5, 6, 7])

2..shape返回的是torch.size()类型。
综合上述两点就可以写出以下代码:

spike_train = torch.zeros(membrane.shape[:1] + torch.Size([self.T]) + membrane.shape[1:],device=membrane.device)

state_dict
model.state_dict() 返回的是模型的参数字典,其中键是参数的名称,值是参数的张量
state_dict.pop(k) 是 Python 字典(dictionary)的一个方法,用于移除字典中键为 k 的项,并返回该项的值。

for key in checkpoint:print(key, checkpoint[key].shape)
for key in model.state_dict():print(key, model.state_dict()[key].size() or .shape)# 在 PyTorch 中,.size() 和 .shape 是等价的,两者都可以用于获取张量的形状信息。#conv1.weight 	 torch.Size([6, 3, 5, 5])
#conv1.bias 	 torch.Size([6])

原来是用的relu.thresh
要改成relu.up

keys = list(checkpoint.keys())
for key in keys:if 'thresh' in key:checkpoint[key[:-6] + 'up'] = checkpoint.pop(key)

state_dict.pop(k) 是 Python 字典(dictionary)的一个方法,用于移除字典中键为 k 的项,并返回该项的值。
由于在 Python 中字典的迭代器在遍历时不允许修改字典的结构,所以必须用keys来作为迭代。
例子二:

#Remove DataParallel wrapper 'module' 
for name in list(checkpoint['state_dict'].keys()):checkpoint['state_dict'][name[7:]] = checkpoint['state_dict'].pop(name)

torch.optim模块中的Optimizer优化器对象也存在一个state_dict对象,此处的state_dict字典对象包含state和param_groups的字典对象

for var_name in optimizer.state_dict():print(var_name,'\t',optimizer.state_dict()[var_name])
输出:
state 	 {}
param_groups 	 [{'lr': 0.001, 'momentum': 0.9, 'dampening': 0, 'weight_decay': 0, 'nesterov': False, 'params': [367949288, 367949432, 376459056, 381121808, 381121952, 381122024, 381121880, 381122168, 381122096, 381122312]}]    

网络,对不同网络层的操作
虽然表面上是说对网络以及网络层的操作,但本质上是对象和索引对象属性的问题。
有一些内置函数用来索引到对象属性:
内置函数: getattr(), setattr()

value = getattr(obj, 'attr') 
setattr(obj, 'attr', 42)

e.g.: 用于遍历索引到对象属性。

    for i in range(2, num_layers + 1):getattr(model, 'layer' + str(i)).idem = Truegetattr(snn, 'layer' + str(i)).idem = True

当没有sequential时:
print(net.fc2)
有sequential时:
print(net.fc[2])

梯度
torch.clamp是有梯度的,只有round函数需要单独考虑梯度(即写backward function)
在这里插入图片描述
round的梯度是和clip一样的。他俩都是treats the quantization and de-quantization function as if it were identity function in the clipping range and constant function outside the clipping range.

grad只要不低到0都是可以的,1e-4,1e-5,也会更新。lr * grad
alpha_new = alpha_old - learning_rate * grad_alpha

Bug
因为不懂optimizer原理犯的错误:
optimizer一定要在model settled 好之后再调用,因为有model.parameters()作为参数
这下对整个梯度的从开始到更新一轮应该比较了解了:

final_model #需要梯度的用parameter或tensor(require_grad)
optimizer = optim.Adam(final_model.parameters(), lr=0.0001)
model.train()
optimizer.zero_grad() #把optimizer存的grad清空
loss.backward() # 根据模型输出的损失值计算梯度。它会自动地沿着网络的参数计算梯度,并将梯度存储在参数的.grad属性中
nn.utils.clip_grad_norm_(model.parameters(), max_norm=10) # 会计算所有参数的梯度的范数,并根据指定的max_norm进行裁剪
optimizer.step() # 这一步是利用优化器来更新模型的参数。优化器根据梯度和指定的优化算法(如SGD、Adam等)来更新模型参数。它会使用loss.backward()计算得到的梯度来更新模型参数,通常使用学习率和其他超参数来控制更新的步长和方向。

优化器在训练过程中会存储并使用梯度来更新模型参数。每次调用optimizer.step()时,优化器会使用之前存储的梯度信息来更新模型参数。

0-d tensor 就是 scalar,不能输出他的shape

UserWarning: Detected call of lr_scheduler.step() before optimizer.step().

#scheduler.step() 不要放在这
train_acc, trian_loss= train_one_epoch(args, model, dset, optimizer, data_loader, epoch)
scheduler.step()

Loss
分类问题就无脑CE,比MSE要好。
nn.CrossEntropyLoss()=nn.LogSoftmax()+nn.NLLLoss().

optimizer
要手动将load下来的参数放到GPU上。

optimizer.load_state_dict(checkpoint['optimizer'])
for state in optimizer.state.values():for k, v in state.items():if isinstance(v, torch.Tensor):state[k] = v.cuda()

许愿第一次论文

这篇关于ICANN备稿时debug遇到的问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/821929

相关文章

Web服务器-Nginx-高并发问题

《Web服务器-Nginx-高并发问题》Nginx通过事件驱动、I/O多路复用和异步非阻塞技术高效处理高并发,结合动静分离和限流策略,提升性能与稳定性... 目录前言一、架构1. 原生多进程架构2. 事件驱动模型3. IO多路复用4. 异步非阻塞 I/O5. Nginx高并发配置实战二、动静分离1. 职责2

解决升级JDK报错:module java.base does not“opens java.lang.reflect“to unnamed module问题

《解决升级JDK报错:modulejava.basedoesnot“opensjava.lang.reflect“tounnamedmodule问题》SpringBoot启动错误源于Jav... 目录问题描述原因分析解决方案总结问题描述启动sprintboot时报以下错误原因分析编程异js常是由Ja

MySQL 表空却 ibd 文件过大的问题及解决方法

《MySQL表空却ibd文件过大的问题及解决方法》本文给大家介绍MySQL表空却ibd文件过大的问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录一、问题背景:表空却 “吃满” 磁盘的怪事二、问题复现:一步步编程还原异常场景1. 准备测试源表与数据

解决Nginx启动报错Job for nginx.service failed because the control process exited with error code问题

《解决Nginx启动报错Jobfornginx.servicefailedbecausethecontrolprocessexitedwitherrorcode问题》Nginx启... 目录一、报错如下二、解决原因三、解决方式总结一、报错如下Job for nginx.service failed bec

SysMain服务可以关吗? 解决SysMain服务导致的高CPU使用率问题

《SysMain服务可以关吗?解决SysMain服务导致的高CPU使用率问题》SysMain服务是超级预读取,该服务会记录您打开应用程序的模式,并预先将它们加载到内存中以节省时间,但它可能占用大量... 在使用电脑的过程中,CPU使用率居高不下是许多用户都遇到过的问题,其中名为SysMain的服务往往是罪魁

MySQ中出现幻读问题的解决过程

《MySQ中出现幻读问题的解决过程》文章解析MySQLInnoDB通过MVCC与间隙锁机制在可重复读隔离级别下解决幻读,确保事务一致性,同时指出性能影响及乐观锁等替代方案,帮助开发者优化数据库应用... 目录一、幻读的准确定义与核心特征幻读 vs 不可重复读二、mysql隔离级别深度解析各隔离级别的实现差异

C++ vector越界问题的完整解决方案

《C++vector越界问题的完整解决方案》在C++开发中,std::vector作为最常用的动态数组容器,其便捷性与性能优势使其成为处理可变长度数据的首选,然而,数组越界访问始终是威胁程序稳定性的... 目录引言一、vector越界的底层原理与危害1.1 越界访问的本质原因1.2 越界访问的实际危害二、基

Python多线程应用中的卡死问题优化方案指南

《Python多线程应用中的卡死问题优化方案指南》在利用Python语言开发某查询软件时,遇到了点击搜索按钮后软件卡死的问题,本文将简单分析一下出现的原因以及对应的优化方案,希望对大家有所帮助... 目录问题描述优化方案1. 网络请求优化2. 多线程架构优化3. 全局异常处理4. 配置管理优化优化效果1.

Linux部署中的文件大小写问题的解决方案

《Linux部署中的文件大小写问题的解决方案》在本地开发环境(Windows/macOS)一切正常,但部署到Linux服务器后出现模块加载错误,核心原因是Linux文件系统严格区分大小写,所以本文给大... 目录问题背景解决方案配置要求问题背景在本地开发环境(Windows/MACOS)一切正常,但部署到

MySQL磁盘空间不足问题解决

《MySQL磁盘空间不足问题解决》本文介绍查看空间使用情况的方式,以及各种空间问题的原因和解决方案,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习吧... 目录查看空间使用情况Binlog日志文件占用过多表上的索引太多导致空间不足大字段导致空间不足表空间碎片太多导致空间不足临时表空间