免费阅读篇 | 芒果YOLOv8改进114:上采样Dysample:顶会ICCV2023,轻量级图像增采样器,通过学习采样来学习上采样,计算资源需求小

本文主要是介绍免费阅读篇 | 芒果YOLOv8改进114:上采样Dysample:顶会ICCV2023,轻量级图像增采样器,通过学习采样来学习上采样,计算资源需求小,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

💡🚀🚀🚀本博客 改进源代码改进 适用于 YOLOv8 按步骤操作运行改进后的代码即可

该专栏完整目录链接: 芒果YOLOv8深度改进教程
🚀🚀🚀

DySample是一个超轻量级和有效的动态上采样器,是一种更简洁、更高效的方式,用于提升图像分辨率。相较于传统的CARAFE和SAPA方法,DySample对计算资源的需求更小,能够在不增加额外负担的情况下实现图像分辨率的提升。

该篇博客为免费阅读内容,YOLOv8 + 上采样Dysample 改进内容🚀🚀🚀

文章目录

      • 1. Dysample 论文
      • 2. YOLOv8 核心代码改进部分
      • 2.1 核心新增代码
        • 2.2 代码修改部分
      • 2.3 YOLOv8-Dysample网络配置文件
      • 2.4 运行代码
      • 改进说明


1. Dysample 论文

我们介绍了 DySample,这是一款超轻量级且有效的动态上采样器。虽然最近基于内核的动态上采样器(如 CARAFE、FADE 和 SAPA)已经取得了令人印象深刻的性能提升,但它们引入了大量工作负载,这主要是由于耗时的动态卷积和用于生成动态内核的额外子网。此外,FADE和SAPA对高分辨率特征引导的需求在某种程度上限制了它们的应用场景。为了解决这些问题,我们绕过了动态卷积,从点采样的角度制定了上采样,这样可以节省资源,并且可以通过 PyTorch 中的标准内置函数轻松实现。我们首先展示了一个朴素的设计,然后演示了如何逐步加强其上采样行为,以实现我们新的上采样器 DySample。与以前基于内核的动态上采样器相比,DySample 不需要定制的 CUDA 包,参数、FLOP、GPU 内存和延迟也少得多。除了轻量级特性外,DySample 在五项密集预测任务中的表现优于其他上采样器,包括语义分割、目标检测、实例分割、全景分割和单目深度估计。
在这里插入图片描述

具体细节可以去看原论文:https://arxiv.org/pdf/2308.15085.pdf


2. YOLOv8 核心代码改进部分

2.1 核心新增代码

首先在ultralytics/nn/modules文件夹下,创建一个 dysample.py文件,新增以下代码

import torch
import torch.nn as nn
import torch.nn.functional as Fdef normal_init(module, mean=0, std=1, bias=0):if hasattr(module, 'weight') and module.weight is not None:nn.init.normal_(module.weight, mean, std)if hasattr(module, 'bias') and module.bias is not None:nn.init.constant_(module.bias, bias)def constant_init(module, val, bias=0):if hasattr(module, 'weight') and module.weight is not None:nn.init.constant_(module.weight, val)if hasattr(module, 'bias') and module.bias is not None:nn.init.constant_(module.bias, bias)class DySample(nn.Module):def __init__(self, in_channels, scale=2, style='lp', groups=4, dyscope=False):super().__init__()self.scale = scaleself.style = styleself.groups = groupsassert style in ['lp', 'pl']if style == 'pl':assert in_channels >= scale ** 2 and in_channels % scale ** 2 == 0assert in_channels >= groups and in_channels % groups == 0if style == 'pl':in_channels = in_channels // scale ** 2out_channels = 2 * groupselse:out_channels = 2 * groups * scale ** 2self.offset = nn.Conv2d(in_channels, out_channels, 1)normal_init(self.offset, std=0.001)if dyscope:self.scope = nn.Conv2d(in_channels, out_channels, 1)constant_init(self.scope, val=0.)self.register_buffer('init_pos', self._init_pos())def _init_pos(self):h = torch.arange((-self.scale + 1) / 2, (self.scale - 1) / 2 + 1) / self.scalereturn torch.stack(torch.meshgrid([h, h])).transpose(1, 2).repeat(1, self.groups, 1).reshape(1, -1, 1, 1)def sample(self, x, offset):B, _, H, W = offset.shapeoffset = offset.view(B, 2, -1, H, W)coords_h = torch.arange(H) + 0.5coords_w = torch.arange(W) + 0.5coords = torch.stack(torch.meshgrid([coords_w, coords_h])).transpose(1, 2).unsqueeze(1).unsqueeze(0).type(x.dtype).to(x.device)normalizer = torch.tensor([W, H], dtype=x.dtype, device=x.device).view(1, 2, 1, 1, 1)coords = 2 * (coords + offset) / normalizer - 1coords = F.pixel_shuffle(coords.view(B, -1, H, W), self.scale).view(B, 2, -1, self.scale * H, self.scale * W).permute(0, 2, 3, 4, 1).contiguous().flatten(0, 1)return F.grid_sample(x.reshape(B * self.groups, -1, H, W), coords, mode='bilinear',align_corners=False, padding_mode="border").view(B, -1, self.scale * H, self.scale * W)def forward_lp(self, x):if hasattr(self, 'scope'):offset = self.offset(x) * self.scope(x).sigmoid() * 0.5 + self.init_poselse:offset = self.offset(x) * 0.25 + self.init_posreturn self.sample(x, offset)def forward_pl(self, x):x_ = F.pixel_shuffle(x, self.scale)if hasattr(self, 'scope'):offset = F.pixel_unshuffle(self.offset(x_) * self.scope(x_).sigmoid(), self.scale) * 0.5 + self.init_poselse:offset = F.pixel_unshuffle(self.offset(x_), self.scale) * 0.25 + self.init_posreturn self.sample(x, offset)def forward(self, x):if self.style == 'pl':return self.forward_pl(x)return self.forward_lp(x)
2.2 代码修改部分

第一步:
ultralytics/nn/tasks.py文件开头部分中,新增:定义在 dysample.py 里面的模块

from ultralytics.nn.modules.dysample import DySample

直接复制这段代码即可


如下图所示:
在这里插入图片描述


然后在 在tasks.py中配置
找到

        elif m is nn.BatchNorm2d:args = [ch[f]]

在这句上面加一个

        elif m in [DySample]:args = [ch[f], *args[0:]]

直接复制这段代码即可


2.3 YOLOv8-Dysample网络配置文件

新增YOLOv8-Dysample.yaml

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'# [depth, width, max_channels]n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPss: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPsm: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPsl: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPsx: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs# YOLOv8.0n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2- [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4- [-1, 3, C2f, [128, True]]- [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8- [-1, 6, C2f, [256, True]]- [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16- [-1, 6, C2f, [512, True]]- [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32- [-1, 3, C2f, [1024, True]]- [-1, 1, SPPF, [1024, 5]]  # 9# YOLOv8.0n head
head:- [-1, 1, DySample, []]- [[-1, 6], 1, Concat, [1]]  # cat backbone P4- [-1, 3, C2f, [512]]  # 12- [-1, 1, DySample, []]- [[-1, 4], 1, Concat, [1]]  # cat backbone P3- [-1, 3, C2f, [256]]  # 15 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]]- [[-1, 12], 1, Concat, [1]]  # cat head P4- [-1, 3, C2f, [512]]  # 18 (P4/16-medium)- [-1, 1, Conv, [512, 3, 2]]- [[-1, 9], 1, Concat, [1]]  # cat head P5- [-1, 3, C2f, [1024]]  # 21 (P5/32-large)- [[15, 18, 21], 1, Detect, [nc]]  # Detect(P3, P4, P5)

直接复制这段代码即可

2.4 运行代码

直接替换YOLOv8-Dysample.yaml 进行训练即可

到这里就完成了这篇的改进。

改进说明

这里改进是放在了主干后面,如果想放在改进其他地方,也是可以的。直接新增,然后调整通道,配齐即可,如果有不懂的,可以添加博主联系方式,如下


🥇🥇🥇
添加博主联系方式:

友好的读者可以添加博主QQ: 2434798737, 有空可以回答一些答疑和问题

🚀🚀🚀


参考

https://github.com/ultralytics/ultralytics

这篇关于免费阅读篇 | 芒果YOLOv8改进114:上采样Dysample:顶会ICCV2023,轻量级图像增采样器,通过学习采样来学习上采样,计算资源需求小的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/821073

相关文章

LiteFlow轻量级工作流引擎使用示例详解

《LiteFlow轻量级工作流引擎使用示例详解》:本文主要介绍LiteFlow是一个灵活、简洁且轻量的工作流引擎,适合用于中小型项目和微服务架构中的流程编排,本文给大家介绍LiteFlow轻量级工... 目录1. LiteFlow 主要特点2. 工作流定义方式3. LiteFlow 流程示例4. LiteF

SpringBoot集成LiteFlow实现轻量级工作流引擎的详细过程

《SpringBoot集成LiteFlow实现轻量级工作流引擎的详细过程》LiteFlow是一款专注于逻辑驱动流程编排的轻量级框架,它以组件化方式快速构建和执行业务流程,有效解耦复杂业务逻辑,下面给大... 目录一、基础概念1.1 组件(Component)1.2 规则(Rule)1.3 上下文(Conte

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

Python中OpenCV与Matplotlib的图像操作入门指南

《Python中OpenCV与Matplotlib的图像操作入门指南》:本文主要介绍Python中OpenCV与Matplotlib的图像操作指南,本文通过实例代码给大家介绍的非常详细,对大家的学... 目录一、环境准备二、图像的基本操作1. 图像读取、显示与保存 使用OpenCV操作2. 像素级操作3.

C/C++的OpenCV 进行图像梯度提取的几种实现

《C/C++的OpenCV进行图像梯度提取的几种实现》本文主要介绍了C/C++的OpenCV进行图像梯度提取的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录预www.chinasem.cn备知识1. 图像加载与预处理2. Sobel 算子计算 X 和 Y

c/c++的opencv图像金字塔缩放实现

《c/c++的opencv图像金字塔缩放实现》本文主要介绍了c/c++的opencv图像金字塔缩放实现,通过对原始图像进行连续的下采样或上采样操作,生成一系列不同分辨率的图像,具有一定的参考价值,感兴... 目录图像金字塔简介图像下采样 (cv::pyrDown)图像上采样 (cv::pyrUp)C++ O

macOS Sequoia 15.5 发布: 改进邮件和屏幕使用时间功能

《macOSSequoia15.5发布:改进邮件和屏幕使用时间功能》经过常规Beta测试后,新的macOSSequoia15.5现已公开发布,但重要的新功能将被保留到WWDC和... MACOS Sequoia 15.5 正式发布!本次更新为 Mac 用户带来了一系列功能强化、错误修复和安全性提升,进一步增

重新对Java的类加载器的学习方式

《重新对Java的类加载器的学习方式》:本文主要介绍重新对Java的类加载器的学习方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、介绍1.1、简介1.2、符号引用和直接引用1、符号引用2、直接引用3、符号转直接的过程2、加载流程3、类加载的分类3.1、显示

Python+wxPython构建图像编辑器

《Python+wxPython构建图像编辑器》图像编辑应用是学习GUI编程和图像处理的绝佳项目,本教程中,我们将使用wxPython,一个跨平台的PythonGUI工具包,构建一个简单的... 目录引言环境设置创建主窗口加载和显示图像实现绘制工具矩形绘制箭头绘制文字绘制临时绘制处理缩放和旋转缩放旋转保存编