基于深度学习的口罩人脸识别研究进展

2024-03-18 01:52

本文主要是介绍基于深度学习的口罩人脸识别研究进展,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        MTCNN模型训练输入的所有图像都是正样本(戴口罩的照片),没有负样本作为模型输入。在后续的识别任务模块中,导入MTCNN模型检测结果,对特征点进行编码比较进行识别。

        基于MTCNN的口罩人脸识别框架可分为四个阶段:

        人脸检测;面部与面罩对齐;带面具的人脸编码;戴口罩人脸对应的身份识别。

         如图1所示,在训练过程中,同一目标首先需要两组输入图像(未遮蔽的人脸图像和遮蔽的人脸图像)。机器自动为未蒙版图像添加蒙版,然后将其放入样本库中与蒙版图像进行特征比较。

这个过程分为两条链:

        第一条链是首先使用MTCNN技术的三个子网络并从粗到精地提取人脸部分,然后使用MobileNet组件进行掩模检测。如果发现输入是原始图像(无掩模),则在口鼻特征点区域添加掩模,并将处理后的“掩模人脸图像”输入到识别样本数据库中。

        第二条链是MTCNN的级联校正。将采集到的蒙版人脸图像裁剪为与初始样本库相同的像素大小。然后并行将两个链接添加到样本库中,进行比较(将自动处理的蒙版人脸与原始蒙版人脸进行比较)来预测最终的人脸信息。

        在创建识别样本数据库时收集未遮蔽的人脸图像,在执行识别时收集遮蔽的人脸图像。之后,将遮罩添加到未遮罩的人脸图像中,然后将遮罩的人脸与手动处理的遮罩人脸和收集的遮罩人脸进行比较。最后输出该人的身份信息。

        对于MTCNN网络,简单调整P/R/O-Net的阈值。三个阈值控制裁剪框输出高精度的面部信息。Faceplus-mask程序主要应用脸部的68个关键点。如图2所示,为人脸添加蒙版的主要部分如下:

        (1)搜索面部68个关键点。

        (2)确定人的鼻子和面部轮廓。

        (3)根据面部轮廓确定面部左侧点、面部下侧点和面部右侧点。

        (4)从鼻子到面部底点的高度、口罩尺寸中心线确定。

        (5)将口罩左右均匀分开;使用最左侧面部点与中心轴之间的距离作为宽度来调整蒙版左侧的大小。调整右蒙版,宽度为面部右侧点到中心轴的距离。将左蒙版和右蒙版合并为一个新蒙版。

        (6) 以中心轴相对于Y轴的旋转角度调整并旋转新的掩模,最终将掩模放置在图像上的适当位置。

最后基于FaceNet开源模块对两组数据进行对比识别。

1 蒙面人脸检测部分

        正样本图片(戴口罩的人脸图片)的输入样本库使用统一尺寸的图片,因为获取的图片中可能存在手臂、肩膀等身体部位,这对于训练来说可能会产生较多的噪声,MTCNN方法是用于裁剪蒙版图片的人脸区域;而MTCNN,是一种多任务卷积神经网络,其网络模型,主要通过三个级联网络进行人脸分框,即P/R/O-Net。

        (1)P-net用于快速生成面部拦截窗口。执行过程如下:对输入特征进行三层卷积后,利用人脸分类器、边界回归和人脸关键点定位来初步选择人脸区域。然后,P-Net 的主要选择将被馈送到 R-Net 进行下一步。

        (2)R-Net 用于以更精细的方式过滤从上一步截取的面部区域。其过程是:将P-Net得到的所有候选窗口输入R-Net,淘汰较少的有效候选窗口,通过边缘回归和非极大值抑制得到进一步的预测窗口。

        (3)O-Net的作用是生成最终的识别边界和人脸的关键点。运行过程与R-Net类似,但增加了人脸特征点位置的回归预测。最后输出人脸的5个人脸特征点。

2 佩戴口罩时的面部对准部分

        主要调用“Dlib”开源库提取128个特征点,输入戴口罩的人脸图片,针对鼻子和嘴巴两个部位,在口罩遮盖下,模型自动补足特征点人脸特征点提取;深度学习部分采用Face-net模型。该模型通过提取其中一层作为特征来学习从图像到欧几里得空间的编码方法。该算法主要直接应用已建立的CNN模型(例如GoogleNet等)并在此基础上改变损失函数,以方便将人脸图像映射到高层空间层次结构。利用损失函数来优化人脸之间的欧氏距离,使得同一个人的人脸图片的误差距离最小,不同人的人脸图片的误差距离最大。根据获取的特征向量,计算“欧氏距离”进行人脸识别。网络结构如图4所示。经过这一步,人脸缺失的特征点将被填充并参与识别。

3 佩戴口罩人脸编码部分

        获取人脸128个点的特征编码,并根据人脸编码信息矩阵计算不同人脸之间的距离。

4 佩戴口罩的人脸识别部分

        所有计算距离的方法都安排好之后,就进行最后一步的人脸识别。计算数据库中的人脸数据,将信息编码后的图片存入已知人脸信息列表中。

这篇关于基于深度学习的口罩人脸识别研究进展的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/820832

相关文章

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

Java MCP 的鉴权深度解析

《JavaMCP的鉴权深度解析》文章介绍JavaMCP鉴权的实现方式,指出客户端可通过queryString、header或env传递鉴权信息,服务器端支持工具单独鉴权、过滤器集中鉴权及启动时鉴权... 目录一、MCP Client 侧(负责传递,比较简单)(1)常见的 mcpServers json 配置

Maven中生命周期深度解析与实战指南

《Maven中生命周期深度解析与实战指南》这篇文章主要为大家详细介绍了Maven生命周期实战指南,包含核心概念、阶段详解、SpringBoot特化场景及企业级实践建议,希望对大家有一定的帮助... 目录一、Maven 生命周期哲学二、default生命周期核心阶段详解(高频使用)三、clean生命周期核心阶

深度剖析SpringBoot日志性能提升的原因与解决

《深度剖析SpringBoot日志性能提升的原因与解决》日志记录本该是辅助工具,却为何成了性能瓶颈,SpringBoot如何用代码彻底破解日志导致的高延迟问题,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言第一章:日志性能陷阱的底层原理1.1 日志级别的“双刃剑”效应1.2 同步日志的“吞吐量杀手”

Unity新手入门学习殿堂级知识详细讲解(图文)

《Unity新手入门学习殿堂级知识详细讲解(图文)》Unity是一款跨平台游戏引擎,支持2D/3D及VR/AR开发,核心功能模块包括图形、音频、物理等,通过可视化编辑器与脚本扩展实现开发,项目结构含A... 目录入门概述什么是 UnityUnity引擎基础认知编辑器核心操作Unity 编辑器项目模式分类工程