粤嵌6818开发板触摸屏应用

2024-03-18 00:28

本文主要是介绍粤嵌6818开发板触摸屏应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、触摸屏应用

1.触摸屏设备的名字

在Linux下,一切皆文件,触摸屏也是一个文件。

触摸屏设备的名字:/dev/input/event0

2.触摸屏的两个专业术语

  • 事件 ->event0

当一些外接控制设备(鼠标、键盘,wifi,触摸屏,按键)接入到嵌入式平台(GEC6818)时,这些外接设备的状态发生了改变(鼠标的左键被按下了,键盘的R键被按下,有人连接上wifi了,触摸屏被滑动了一下,按键被按下了)时,这个动作就称之为事件.

  • 输入子系统 ->input

当事件发生的时候,就是由输入子系统来计算这些事件中产生的值。并将这些值整合到一个名为input_event结构体中。(例如:触摸屏被触摸后,输入子系统就会计算出被触摸的坐标值)

3.代码实现流程

1.打开event0文件

2.读取event0文件的数据

3.判断事件类型,打印出数据

4.关闭文件

4.触摸屏数据对应的类型

如果想知道从event0这个文件中读取出来的这个文件的数据是什么类型的,那么就必须先知道输入子系统计算完这个结果之后,是以什么形式放到这个event0这个文件中。

以前我们学习结构体的时候知道描述一个需要很多值的事件,我们可以使用结构体来描述,所以输入子系统处理好触摸屏数据后,也是将这些数据存放到一个结构体中。

该结构体已经定义好了,是被封装在一个头文件,头文件的路径在: /usr/include/linux/input.h

/* * The event structure itself   //事件结构体 */
struct input_event {       -> 专门用于描述一个事件。 struct timeval time;   -> 事件发生的时间。 __u16 type;            -> 事件的类型  (输入子系统会用这个值来描述刚才发生事件的硬件设备)__u16 code;            -> 事件的编码  -> 对事件进一步的描述 左键/右键  A键/R键  x轴/y轴 __s32 value;           -> 事件的值
};
​
struct timeval {        long    tv_sec;         /* 秒 */        long    tv_usec;        /* 微秒 */};

知道触摸屏数据是存放在一个结构体中后,那么我们可以写一段代码来打印出这些数据看看:

#include <stdio.h>
​
#include <sys/types.h>
​
#include <sys/stat.h>
​
#include <fcntl.h>
​
#include <unistd.h>
​
#include <string.h>
​
#include <linux/input.h>
​
int main()
​
{
​
•    // 1.打开event0文件
​
•    int ts_fd;
​
•    ts_fd = open("/dev/input/event0", O_RDONLY);
​
•    if(ts_fd == -1)
​
•    {
​
•        printf("open ts failed!\n");
​
•        return 0;
​
•    }
​
•    // 2.读取event0文件的数据
​
•    struct  input_event ts_buf;
​
•    read(ts_fd, &ts_buf, sizeof(ts_buf));
​
•    
​
•    // 3.判断事件类型,打印出数据
​
•    printf("type = %d", ts_buf.type);
​
•    printf("code = %d", ts_buf.code);
​
•    printf("value = %d", ts_buf.value);
​
•    // 4.关闭文件
​
•    close(ts_fd);
​
•    return 0;
​
}

其实这个结构体结果的值也被封装在一个头文件中:/usr/include/linux/input-event-codes.h

input_event结构体的四个成员:

1.time(时间戳)

输入事件发生的时间戳,精确到微秒。时间结构体定义如下:

struct timeval
{
__time_t tv_sec; // 秒
long int tv_usec; // 微秒(1微秒 = 10-3毫秒 = 10-6秒)
};

2.type(输入事件类型)

输入事件的类型。比如:

3.code(事件代码)

这个 事件代码用于对事件的类型作进一步的描述。比如:当发生EV_KEY事件时,则可能是键盘被按下了,那么究竟是哪个按键被按下了呢?此时查看code就知道了。当发生EV_REL事件时,也许是鼠标动了,也许是滚轮动了。这时可以用code的值来加以区分。

4.value(数据值)

当code都不足以区分事件的性质的时候,可以用value来确认。比如由EV_REL和REL_WHEEL确认发生了鼠标滚轮的动作,但是究竟是向上滚还是向下滚呢?再比如由由EV_KEY和KEY_F确认了发生键盘上F键的动作,但究竟是按下呢还是弹起呢?这时都可以用value值来进一步判断。

举一个实例帮助理解输入子系统:

我们先规定
type:
= 0  吃饭
= 1  睡觉
​
code:
= 0  早餐
= 1  午餐
= 2  晚餐
​
= 0  午觉
= 1  晚觉
​
value:
= 0  吃饱了
= 1  没吃饱 
= 0  睡得着 
= 1  睡不着 
​
​
struct input_event{   -> 代表输入子系统分析出来.type = 0.code = 1.value = 1} 
​
我们再获取输入子系统整合的input_event结构体的值
​
struct input_event{   -> 代表输入子系统分析出来: 你刚刚吃晚餐没吃饱.type = 0.code = 2.value = 1} 
​
struct input_event{   -> 代表输入子系统分析出来: 你刚刚睡午觉没睡着.type = 1.code = 0.value = 3} 
 

练习:编写代码,实现打印出触摸点的坐标。

#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <linux/input.h>
​
int main()
{int ts_fd;struct input_event ts_buf;ts_fd = open("/dev/input/event0",O_RDONLY);if(ts_fd == -1){printf("open ts failed!\n");return -1;}int x,y;while(1){read(ts_fd, &ts_buf, sizeof(ts_buf));if(ts_buf.type == EV_ABS && ts_buf.code == ABS_X)//判断是否发生X轴绝对位移事件{x = ts_buf.value;}if(ts_buf.type == EV_ABS && ts_buf.code == ABS_Y)//判断是否发生Y轴绝对位移事件{y = ts_buf.value;}if(ts_buf.type == EV_KEY && ts_buf.code == BTN_TOUCH && ts_buf.value == 0)//松手检测{printf("(x, y) = (%d, %d)\n",x,y);}  }close(ts_fd);return 0;
}

作业1:观察打印出的坐标,得出触摸屏和LCD像素对应的关系

黑色边的开发板触摸屏坐标范围是:1024*600

蓝色边的开发板触摸屏坐标范围是:800*480

练习8:通过触摸屏实现显示图片切换。

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdio.h>
#include <linux/input.h>
#include <sys/mman.h>
int ts_fd, lcd_fd;
int ts_x,ts_y;
struct input_event ts_buf;
int *p;
​
char *pic_path[] = {"./1.bmp" , "./2.bmp", "./3.bmp", "./4.bmp", "./5.bmp"};
​
/**函数名:show_bmp*函数功能:显示bmp图片*参数:*  path: 图片的路径*  zs_x:  图片显示的原点x轴坐标*  zs_y:  图片显示的原点y轴坐标*  whide: 图片的宽度(单位像素)*  high: 图片的高度(单位像素)
*/
int show_bmp(char *path, int zs_x, int zs_y, int w, int h)
{// 1、打开bmp文件
​int bmp_fd = open(path, O_RDONLY);if (bmp_fd == -1) {printf("open bmp error!\n");return -1;  }
​//2、 跳过bmp文件头和信息头lseek(bmp_fd, 54, SEEK_SET);  
​//3、读取bmp文件的数据char bmp_buf[w*h*3];read(bmp_fd, bmp_buf, 800*480*3);  // 读取bmp文件数据到bmp_buf
​//4、数据处理int lcd_buf[w*h];int n;for (n = 0; n < 800*480; n++){lcd_buf[n] = bmp_buf[3*n] | bmp_buf[3*n+1]<<8 | bmp_buf[3*n+2]<<16;}
​​int *new_p = p + zs_x + zs_y*800;
​//6、// 5、将数据拷贝到映射空间int x, y;for(y=0;y<h;y++){for(x=0;x<w;x++){*(new_p+x+(h-1-y)*800) = lcd_buf[x+y*w];}
​}
​close(bmp_fd);
}
​
void get_xy()
{// 2.读取event0文件的数据read(ts_fd, &ts_buf, sizeof(ts_buf));
​// 3.判断事件类型,打印出数据if(ts_buf.type == EV_ABS && ts_buf.code == ABS_X)//获取X轴坐标{ts_x = ts_buf.value;//0-1024  ---> 0-800ts_x = ts_x * 800 / 1024;}   if(ts_buf.type == EV_ABS && ts_buf.code == ABS_Y)//获取Y轴坐标{ts_y = ts_buf.value;//0-600ts_y = ts_y * 480 / 600;}       if(ts_buf.type == EV_KEY && ts_buf.code == BTN_TOUCH && ts_buf.value == 0)//松手检测{printf("(x,y) = (%d,%d)",ts_x,ts_y);}
​
}
​
int main()
{// 1.打开fb0、event0文件lcd_fd = open("/dev/fb0", O_RDWR);if(lcd_fd < 0){perror("open fb0");return -1;}
​ts_fd = open("/dev/input/event0", O_RDONLY);if (ts_fd == -1) {perror("open touch failed\n");return -1;}
​// 内存映射p = (int *)mmap(NULL, 800*480*4, PROT_READ|PROT_WRITE, MAP_SHARED, lcd_fd, 0);if(p == MAP_FAILED){perror("mmap failed\n");return -1;}int i = 0;while (1){get_xy();if(ts_buf.type == EV_KEY && ts_buf.code == BTN_TOUCH && ts_buf.value == 0)//松手检测{if(ts_x>=0 && ts_x<200)//上一张{i--;if(i<0){i = 4;}show_bmp(pic_path[i], 0, 0, 800, 480);}if(ts_x>=600 && ts_x<800)//下一张{i++;if(i>4){i = 0;}show_bmp(pic_path[i], 0, 0, 800, 480);
​}​
​}}// 4.关闭文件munmap(p, 800*480*4);close(lcd_fd);close(ts_fd);return 0;
}

这篇关于粤嵌6818开发板触摸屏应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/820676

相关文章

Nginx内置变量应用场景分析

《Nginx内置变量应用场景分析》Nginx内置变量速查表,涵盖请求URI、客户端信息、服务器信息、文件路径、响应与性能等类别,这篇文章给大家介绍Nginx内置变量应用场景分析,感兴趣的朋友跟随小编一... 目录1. Nginx 内置变量速查表2. 核心变量详解与应用场景3. 实际应用举例4. 注意事项Ng

Java中的随机数生成案例从范围字符串到动态区间应用

《Java中的随机数生成案例从范围字符串到动态区间应用》本文介绍了在Java中生成随机数的多种方法,并通过两个案例解析如何根据业务需求生成特定范围的随机数,本文通过两个实际案例详细介绍如何在java中... 目录Java中的随机数生成:从范围字符串到动态区间应用引言目录1. Java中的随机数生成基础基本随

利用Python操作Word文档页码的实际应用

《利用Python操作Word文档页码的实际应用》在撰写长篇文档时,经常需要将文档分成多个节,每个节都需要单独的页码,下面:本文主要介绍利用Python操作Word文档页码的相关资料,文中通过代码... 目录需求:文档详情:要求:该程序的功能是:总结需求:一次性处理24个文档的页码。文档详情:1、每个

Java中的分布式系统开发基于 Zookeeper 与 Dubbo 的应用案例解析

《Java中的分布式系统开发基于Zookeeper与Dubbo的应用案例解析》本文将通过实际案例,带你走进基于Zookeeper与Dubbo的分布式系统开发,本文通过实例代码给大家介绍的非常详... 目录Java 中的分布式系统开发基于 Zookeeper 与 Dubbo 的应用案例一、分布式系统中的挑战二

Java 缓存框架 Caffeine 应用场景解析

《Java缓存框架Caffeine应用场景解析》文章介绍Caffeine作为高性能Java本地缓存框架,基于W-TinyLFU算法,支持异步加载、灵活过期策略、内存安全机制及统计监控,重点解析其... 目录一、Caffeine 简介1. 框架概述1.1 Caffeine的核心优势二、Caffeine 基础2

使用Node.js和PostgreSQL构建数据库应用

《使用Node.js和PostgreSQL构建数据库应用》PostgreSQL是一个功能强大的开源关系型数据库,而Node.js是构建高效网络应用的理想平台,结合这两个技术,我们可以创建出色的数据驱动... 目录初始化项目与安装依赖建立数据库连接执行CRUD操作查询数据插入数据更新数据删除数据完整示例与最佳

PHP应用中处理限流和API节流的最佳实践

《PHP应用中处理限流和API节流的最佳实践》限流和API节流对于确保Web应用程序的可靠性、安全性和可扩展性至关重要,本文将详细介绍PHP应用中处理限流和API节流的最佳实践,下面就来和小编一起学习... 目录限流的重要性在 php 中实施限流的最佳实践使用集中式存储进行状态管理(如 Redis)采用滑动

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

PostgreSQL简介及实战应用

《PostgreSQL简介及实战应用》PostgreSQL是一种功能强大的开源关系型数据库管理系统,以其稳定性、高性能、扩展性和复杂查询能力在众多项目中得到广泛应用,本文将从基础概念讲起,逐步深入到高... 目录前言1. PostgreSQL基础1.1 PostgreSQL简介1.2 基础语法1.3 数据库

Python中的filter() 函数的工作原理及应用技巧

《Python中的filter()函数的工作原理及应用技巧》Python的filter()函数用于筛选序列元素,返回迭代器,适合函数式编程,相比列表推导式,内存更优,尤其适用于大数据集,结合lamb... 目录前言一、基本概念基本语法二、使用方式1. 使用 lambda 函数2. 使用普通函数3. 使用 N