RateLimiter源码解析

2024-03-17 23:32
文章标签 源码 解析 ratelimiter

本文主要是介绍RateLimiter源码解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

简介

平滑预热限流(SmoothWarmingUp)

平滑突发限流(SmoothBursty) 

Demo

create过程

acquire过程

 


简介

限流即流量限制,目的是在遇到流量高峰期或者流量突增时,通过对流量进行限制,以把流量控制在系统所能接受的合理范围之内,不至于让系统被高流量击垮。当达到限制速率时,可以拒绝服务(定向到错误页或告知资源没有了)、排队或等待(比如秒杀、评论、下单)、降级(返回兜底数据或默认数据,如商品详情页库存默认有货)等。

 Google开源工具包Guava提供了限流工具类RateLimiter,该类基于令牌桶算法来完成限流。令牌桶算法是一个存放固定容量令牌的桶,按照固定速率往桶里添加令牌。桶中存放的令牌数有最大上限,超出之后就被丢弃或者拒绝。当流量或者网络请求到达时,每个请求都要获取一个令牌,如果能够获取到,则直接处理,并且令牌桶删除一个令牌。如果获取不到,该请求就要被限流,即丢弃或在缓冲区等待。

RateLimiter是一个抽象类,子类SmoothRateLimiter派生了平滑突发限流(SmoothBursty)和平滑预热限流(SmoothWarmingUp)两种实现。继承关系:

 核心参数:

  //当前存储的permitsdouble storedPermits;//最大可存储permitsdouble maxPermits;//两个请求的时间间隔,e.g 当permitsPerSecond=5时,那么请求间隔为200msdouble stableIntervalMicros;/*下一次生成令牌的开始时间由于RateLimiter允许预消费,上次请求预消费令牌后下次请求需要等待相应的时间到nextFreeTicketMicros时刻才可以获取令牌*/private long nextFreeTicketMicros = 0L; 

平滑预热限流(SmoothWarmingUp)

启动后会有一段预热期,逐步将分发频率提升到配置的速率。表现形式为令牌刷新的时间间隔由长逐渐变短。等存储令牌数从maxPermits到达thresholdPermits时,发放令牌的时间价格也由coldInterval降低到了正常的stableInterval。

主要原理是分发令牌的速率会随时间和令牌数而改变,由于涉及数学公式推导,先不研究。(想学习的参考这篇 https://cloud.tencent.com/developer/article/1607090)

平滑突发限流(SmoothBursty) 

  • Demo

将qps设置为10,每0.1s左右获取一个令牌。

如果设置完qps后没有请求,此时会存储令牌,请求过来后直接拿到令牌不需要等待。比如休眠10s按10qps可以生成100个令牌,但qps10决定了最大存储10个令牌。

  • create过程

  //默认使用平滑突发限流,permitsPerSecond为每秒生成的令牌数public static RateLimiter create(double permitsPerSecond) {return create(permitsPerSecond, SleepingStopwatch.createFromSystemTimer());}//SleepingStopwatch主要用于计时和休眠@VisibleForTestingstatic RateLimiter create(double permitsPerSecond, SleepingStopwatch stopwatch) {RateLimiter rateLimiter = new SmoothBursty(stopwatch, 1.0 /* maxBurstSeconds */);rateLimiter.setRate(permitsPerSecond); //RateLimiter的setRate方法return rateLimiter;}public final void setRate(double permitsPerSecond) {checkArgument(permitsPerSecond > 0.0 && !Double.isNaN(permitsPerSecond), "rate must be positive");synchronized (mutex()) {//调用SmoothRateLimiter的setRate方法doSetRate(permitsPerSecond, stopwatch.readMicros()); //}}//nowMicros为计时器当前时间@Overridefinal void doSetRate(double permitsPerSecond, long nowMicros) {//更新令牌数和获取令牌时间-resync(nowMicros);//更新请求的时间间隔double stableIntervalMicros = SECONDS.toMicros(1L) / permitsPerSecond;this.stableIntervalMicros = stableIntervalMicros;//第一次调用oldMaxPermits为0,所以storedPermits(桶中令牌个数)也为0doSetRate(permitsPerSecond, stableIntervalMicros);}void resync(long nowMicros) {//若当前时间 > 下次生成令牌开始时间if (nowMicros > nextFreeTicketMicros) {//计算出这段时间内,一共可以生产多少令牌。coolDownIntervalMicros()返回stableIntervalMicros,创建时还未赋值,所以是初始0,newPermits计算结果为无穷大double newPermits = (nowMicros - nextFreeTicketMicros) / coolDownIntervalMicros();//更新存储令牌数storedPermits = min(maxPermits, storedPermits + newPermits);//更新下次生成令牌开始时间nextFreeTicketMicros = nowMicros;}}//SmoothBursty的coolDownIntervalMicros方法直接返回时间间隔@Overridedouble coolDownIntervalMicros() {return stableIntervalMicros;}@Overridevoid doSetRate(double permitsPerSecond, double stableIntervalMicros) {double oldMaxPermits = this.maxPermits;//更新最大令牌数maxPermits = maxBurstSeconds * permitsPerSecond;if (oldMaxPermits == Double.POSITIVE_INFINITY) {// if we don't special-case this, we would get storedPermits == NaN, belowstoredPermits = maxPermits;} else {//重新计算存储的令牌数,保持与最大令牌数的比例storedPermits =(oldMaxPermits == 0.0)? 0.0 // initial state: storedPermits * maxPermits / oldMaxPermits;}}

 创建完成后,结果如图所示:当前存储令牌0,最大存储令牌为2,两个请求的时间间隔500ms,更新了下次请求时间,maxBurstSeconds是SmoothBursty的属性,表示存储多少s的请求。

  • acquire过程

RateLimiter会累积令牌,所以可以应对突发流量。在没有足够令牌发放时,采用滞后处理的方式,也就是前一个请求获取令牌所需等待的时间由下一次请求来承受。

获取令牌时可以分为三种情况:1、令牌数足够,直接获取令牌并更新存储令牌数、生成令牌开始时间 2、当前时间 > 开始生成令牌时间,但令牌数不够,此时会借用令牌,将存储置为0,并计算借用的令牌所需要偿还的时间,保存到下一次开始生成令牌时间 3、当前时间 < 开始生成令牌时间,即上一个请求借用的令牌还没还完时间,此时需要休眠到偿还完时间为止,并再次借用令牌。

public double acquire() {return acquire(1);
}public double acquire(int permits) {//需要等待的时间,当令牌足够或者不够导致第一次借用时,返回为0;//当上次借的令牌花费的时间还没有还完,则一直休眠到还完为止,并再次借用long microsToWait = reserve(permits);//线程休眠stopwatch.sleepMicrosUninterruptibly(microsToWait);return 1.0 * microsToWait / SECONDS.toMicros(1L);
}final long reserve(int permits) {checkPermits(permits);//通过互斥锁保证线程安全synchronized (mutex()) {//计算需要休眠的时间return reserveAndGetWaitLength(permits, stopwatch.readMicros());}
}final long reserveAndGetWaitLength(int permits, long nowMicros) {long momentAvailable = reserveEarliestAvailable(permits, nowMicros);//之所以要减去当前时间,是为了让第一次借用令牌的请求不需要休眠,所以后面的方法对nextFreeTicketMicros的处理比较绕return max(momentAvailable - nowMicros, 0);
}final long reserveEarliestAvailable(int requiredPermits, long nowMicros) {resync(nowMicros);long returnValue = nextFreeTicketMicros;double storedPermitsToSpend = min(requiredPermits, this.storedPermits);double freshPermits = requiredPermits - storedPermitsToSpend;//当令牌数不够,需要借用时,计算借用的令牌需要花费的时间long waitMicros =storedPermitsToWaitTime(this.storedPermits, storedPermitsToSpend)+ (long) (freshPermits * stableIntervalMicros);this.nextFreeTicketMicros = LongMath.saturatedAdd(nextFreeTicketMicros, waitMicros);//更新令牌数this.storedPermits -= storedPermitsToSpend;return returnValue;
}void resync(long nowMicros) {//如果当前时间>令牌开始生成时间,更新令牌数,更新下次令牌开始生成时间if (nowMicros > nextFreeTicketMicros) {double newPermits = (nowMicros - nextFreeTicketMicros) / coolDownIntervalMicros();storedPermits = min(maxPermits, storedPermits + newPermits);nextFreeTicketMicros = nowMicros;}}

 

与信号量对比:

一旦从 RateLimiter 获得许可,不需要释放。信号量分配后必须释放。
RateLimiter 控制的是速率,以配置的速率分发许可,速率不变时单位时间内分发的许可量是恒定的。信号量控制的是并发访问的数量,单位时间内分配的次数跟使用许可的时长有关,每次申请使用的时间越短,则单位时间内能分配的次数就越多。

这篇关于RateLimiter源码解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/820539

相关文章

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

一文解析C#中的StringSplitOptions枚举

《一文解析C#中的StringSplitOptions枚举》StringSplitOptions是C#中的一个枚举类型,用于控制string.Split()方法分割字符串时的行为,核心作用是处理分割后... 目录C#的StringSplitOptions枚举1.StringSplitOptions枚举的常用

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

MyBatis延迟加载与多级缓存全解析

《MyBatis延迟加载与多级缓存全解析》文章介绍MyBatis的延迟加载与多级缓存机制,延迟加载按需加载关联数据提升性能,一级缓存会话级默认开启,二级缓存工厂级支持跨会话共享,增删改操作会清空对应缓... 目录MyBATis延迟加载策略一对多示例一对多示例MyBatis框架的缓存一级缓存二级缓存MyBat

前端缓存策略的自解方案全解析

《前端缓存策略的自解方案全解析》缓存从来都是前端的一个痛点,很多前端搞不清楚缓存到底是何物,:本文主要介绍前端缓存的自解方案,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、为什么“清缓存”成了技术圈的梗二、先给缓存“把个脉”:浏览器到底缓存了谁?三、设计思路:把“发版”做成“自愈”四、代码

Java集合之Iterator迭代器实现代码解析

《Java集合之Iterator迭代器实现代码解析》迭代器Iterator是Java集合框架中的一个核心接口,位于java.util包下,它定义了一种标准的元素访问机制,为各种集合类型提供了一种统一的... 目录一、什么是Iterator二、Iterator的核心方法三、基本使用示例四、Iterator的工

Java JDK Validation 注解解析与使用方法验证

《JavaJDKValidation注解解析与使用方法验证》JakartaValidation提供了一种声明式、标准化的方式来验证Java对象,与框架无关,可以方便地集成到各种Java应用中,... 目录核心概念1. 主要注解基本约束注解其他常用注解2. 核心接口使用方法1. 基本使用添加依赖 (Maven

Java中的分布式系统开发基于 Zookeeper 与 Dubbo 的应用案例解析

《Java中的分布式系统开发基于Zookeeper与Dubbo的应用案例解析》本文将通过实际案例,带你走进基于Zookeeper与Dubbo的分布式系统开发,本文通过实例代码给大家介绍的非常详... 目录Java 中的分布式系统开发基于 Zookeeper 与 Dubbo 的应用案例一、分布式系统中的挑战二