【洛谷 P8602】[蓝桥杯 2013 省 A] 大臣的旅费 题解(图论+深度优先搜索+树的直径+链式前向星)

本文主要是介绍【洛谷 P8602】[蓝桥杯 2013 省 A] 大臣的旅费 题解(图论+深度优先搜索+树的直径+链式前向星),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

[蓝桥杯 2013 省 A] 大臣的旅费

题目描述

很久以前,T 王国空前繁荣。为了更好地管理国家,王国修建了大量的快速路,用于连接首都和王国内的各大城市。

为节省经费,T 国的大臣们经过思考,制定了一套优秀的修建方案,使得任何一个大城市都能从首都直接或者通过其他大城市间接到达。同时,如果不重复经过大城市,从首都到达每个大城市的方案都是唯一的。

J 是 T 国重要大臣,他巡查于各大城市之间,体察民情。所以,从一个城市马不停蹄地到另一个城市成了 J 最常做的事情。他有一个钱袋,用于存放往来城市间的路费。

聪明的 J 发现,如果不在某个城市停下来修整,在连续行进过程中,他所花的路费与他已走过的距离有关,在走第 x x x 千米到第 x + 1 x+1 x+1 千米这一千米中( x x x 是整数),他花费的路费是 x + 10 x+10 x+10 这么多。也就是说走 1 1 1 千米花费 11 11 11,走 2 2 2 千米要花费 23 23 23

J 大臣想知道:他从某一个城市出发,中间不休息,到达另一个城市,所有可能花费的路费中最多是多少呢?

输入格式

输入的第一行包含一个整数 n ( n ≤ 1 0 5 ) n(n \le 10^5) n(n105),表示包括首都在内的 T T T 王国的城市数。

城市从 1 1 1 开始依次编号, 1 1 1 号城市为首都。

接下来 n − 1 n-1 n1 行,描述 T T T 国的高速路( T T T 国的高速路一定是 n − 1 n-1 n1 条)。

每行三个整数 P i , Q , D i P_i,Q,D_i Pi,Q,Di,表示城市 P i P_i Pi 和城市 Q i Q_i Qi 之间有一条高速路,长度为 D i ( D i ≤ 1000 ) D_i(D_i \le 1000) Di(Di1000) 米。

输出格式

输出一个整数,表示大臣J最多花费的路费是多少。

样例 #1

样例输入 #1

5
1 2 2
1 3 1
2 4 5
2 5 4

样例输出 #1

135

提示

样例解释:大臣 J 从城市 4 4 4 到城市 5 5 5 要花费 135 135 135 的路费。

时限 5 秒, 64M。蓝桥杯 2013 年第四届省赛


思路

这个图是一棵树。树是一种特殊的图,它是无环的连通图。“连通"意味着图中的任意两个节点都存在一条路径相连,这对应了题目中的"任何一个大城市都能从首都直接或者通过其他大城市间接到达”。“无环"则意味着图中不存在闭合的路径,这对应了题目中的"如果不重复经过大城市,从首都到达每个大城市的方案都是唯一的”。

树的直径定义为树中所有最短路径的最大值,也就是树中最远的两个节点之间的距离。在无向树中,最远的两个节点一定是叶子节点,也就是只有一个邻居的节点。

首先从树中任意一个节点开始,进行一次深度优先搜索,找到最远的节点。然后,从这个节点开始再进行一次深度优先搜索,找到最远的节点。这两个节点之间的距离就是树的直径。

首先,定义一些常量和类型,包括节点的最大数量(N),无穷大(INF),模数(MOD),以及一些类型别名如长整型(ll)和长整型对(pll)。

然后,定义一个全局变量n用来存储城市的数量。定义一个结构体Snode,用来表示边,包括目标节点(to),边的长度(d)和下一条边的索引(next)。定义一个数组edge用来存储所有的边,一个数组head用来存储每个节点的第一条边的索引,一个变量cnt用来计数边的数量。

接着,定义一个函数add,用来向邻接链表中添加边。函数接受两个节点和一条边的长度作为参数,然后将这条边添加到邻接链表中。

然后,定义一个函数dfs,用来进行深度优先搜索。函数接受一个节点和它的父节点作为参数,然后返回一个长整型对,其中第一个元素是该节点到达的最远节点,第二个元素是最远的距离。在函数中,遍历该节点的所有边,如果边的目标节点不是父节点,则对目标节点进行深度优先搜索,并更新最远的节点和距离。

在主函数中,首先初始化头结点,然后从输入中读取城市的数量和所有的边。接着,从首都开始进行一次深度优先搜索,找到最远的节点,然后从这个节点开始再进行一次深度优先搜索,找到最远的距离。最后,根据题目的要求,计算并输出最多的路费。


AC代码

#include <algorithm>
#include <cstring>
#include <iostream>
#define mp make_pair
#define AUTHOR "HEX9CF"
using namespace std;
using ll = long long;
using pll = pair<ll, ll>;const int N = 1e6 + 7;
const int INF = 0x3f3f3f3f;
const ll MOD = 1e9 + 7;int n;struct Snode {int to;int d;int next;
} edge[N];
int head[N];
int cnt = 0;void add(int u, int v, int d) {edge[cnt] = {v, d, head[u]};head[u] = cnt++;
}pll dfs(int x, int fa) {// cout << x << endl;pll ret = {x, 0};for (int i = head[x]; ~i; i = edge[i].next) {int to = edge[i].to;if (to == fa) {continue;}pll t = dfs(to, x);ll d = t.second + edge[i].d;if (ret.second < d) {ret = {t.first, d};}}return ret;
}int main() {ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);memset(head, -1, sizeof(head));cin >> n;for (int i = 1; i < n; i++) {int p, q, d;cin >> p >> q >> d;add(p, q, d);add(q, p, d);}int f = dfs(1, 0).first;ll dmax = dfs(f, 0).second;cout << (((1 + dmax) * dmax / 2) + dmax * 10);return 0;
}

这篇关于【洛谷 P8602】[蓝桥杯 2013 省 A] 大臣的旅费 题解(图论+深度优先搜索+树的直径+链式前向星)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/819190

相关文章

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

深度解析Spring Boot拦截器Interceptor与过滤器Filter的区别与实战指南

《深度解析SpringBoot拦截器Interceptor与过滤器Filter的区别与实战指南》本文深度解析SpringBoot中拦截器与过滤器的区别,涵盖执行顺序、依赖关系、异常处理等核心差异,并... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

SpringBoot开发中十大常见陷阱深度解析与避坑指南

《SpringBoot开发中十大常见陷阱深度解析与避坑指南》在SpringBoot的开发过程中,即使是经验丰富的开发者也难免会遇到各种棘手的问题,本文将针对SpringBoot开发中十大常见的“坑... 目录引言一、配置总出错?是不是同时用了.properties和.yml?二、换个位置配置就失效?搞清楚加

HTML5 搜索框Search Box详解

《HTML5搜索框SearchBox详解》HTML5的搜索框是一个强大的工具,能够有效提升用户体验,通过结合自动补全功能和适当的样式,可以创建出既美观又实用的搜索界面,这篇文章给大家介绍HTML5... html5 搜索框(Search Box)详解搜索框是一个用于输入查询内容的控件,通常用于网站或应用程

Python中文件读取操作漏洞深度解析与防护指南

《Python中文件读取操作漏洞深度解析与防护指南》在Web应用开发中,文件操作是最基础也最危险的功能之一,这篇文章将全面剖析Python环境中常见的文件读取漏洞类型,成因及防护方案,感兴趣的小伙伴可... 目录引言一、静态资源处理中的路径穿越漏洞1.1 典型漏洞场景1.2 os.path.join()的陷

Spring Boot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)

《SpringBoot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)》:本文主要介绍SpringBoot拦截器Interceptor与过滤器Filter深度解析... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现与实

MyBatis分页插件PageHelper深度解析与实践指南

《MyBatis分页插件PageHelper深度解析与实践指南》在数据库操作中,分页查询是最常见的需求之一,传统的分页方式通常有两种内存分页和SQL分页,MyBatis作为优秀的ORM框架,本身并未提... 目录1. 为什么需要分页插件?2. PageHelper简介3. PageHelper集成与配置3.