Amazon Bedrock ——使用Prompt构建AI软文撰写师的生成式人工智能应用程序

本文主要是介绍Amazon Bedrock ——使用Prompt构建AI软文撰写师的生成式人工智能应用程序,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Amazon Bedrock 是一项完全托管的服务,通过单个 API 提供来自 AI21 Labs、Anthropic、Cohere、Meta、Stability AI 和 Amazon 等领先人工智能公司的高性能基础模型(FM),以及通过安全性、隐私性和负责任的 AI 构建生成式人工智能应用程序所需的一系列广泛功能。

在这里插入图片描述
本文将探索Amazon Bedrock的各类内置对话应用并根据需求创建一个自己的对话应用

一、模型简介

登录Amazon Bedrock的控制台后:https://aws.amazon.com/cn/bedrock/?trk=d663ea2c-78d3-497f-a8c5-4bf7949cc694&sc_channel=el
可以看到Amazon Bedrock支持多个基础模型(foundation model),其中包括Amazon Titan,Claude,Jurassic,Command,Stable Diffusion 以及 Llama2。

1.1、Claude

Claude 2.1 是 Anthropic 最新的大型语言模型(LLM),具有业界领先的上下文窗口(支持 20 万个令牌),降低了幻觉率,并提高了长文档的准确性。
在这里插入图片描述

  • 支持20万个令牌的上下文窗口:Anthropic 将可以传递给 Claude 的信息量增加了一倍,扩展到 20 万个令牌,相当于大约 15 万个单词,或超过 500 页的材料,能够与大量内容或数据进行交互,因此可以进行总结、执行问答、预测趋势、比较和对比多个文档等等。
  • 胜任多种任务:Claude 可以用于编写复杂对话,生成创意内容,执行复杂推理,编写代码,以及提供详细指导。它可以编辑、改写、总结、分类、提取结构化数据,并根据内容进行问答等。
  • 处于前沿的安全保障:Claude 基于 Anthropic 对安全性的领先研究,采用 Constitutional AI 等技术构建。Claude 的设计目标是降低品牌风险,致力于提供有益、诚实且无害的服务。

1.2、Amazon Titan

Amazon Bedrock 独有的 Amazon Titan 系列模型融合了 Amazon 25 年来在其业务范围内积累的人工智能和机器学习创新的经验Amazon Titan 模型由 AWS 创建并在大型数据集上进行预训练,使其成为强大的通用模型,旨在支持各种用例,同时还支持负责任地使用 AI。您可以按原样使用,也可以根据自己的数据私下进行自定义。

在这里插入图片描述

  • 广泛的应用范围:高性能图像、多模态和文本模型为广泛的生成式人工智能应用提供支持,例如内容创建、图像生成以及搜索和推荐体验。
  • 负责任和道德性:所有 Amazon Titan FM 都为负责任地使用 AI 提供内置支持,具体方法是检测并移除数据中的有害内容、拒绝不当的用户输入以及筛选模型输出。

Titan 模型分为三种类型:嵌入、文本生成和图像生成。

  • Titan Embeddings G1 – 文本模型将文本输入(单词、短语或可能的大型文本单元)转换为包含文本语义的数字表示(称为嵌入)。 虽然该法学硕士不会生成文本,但它对于个性化和搜索等应用程序很有用。 通过比较嵌入,该模型将产生比单词匹配更相关和上下文的响应。 新的 Titan Multimodal Embeddings G1 模型适用于通过文本搜索图像、通过图像相似性或通过文本和图像的组合搜索图像等用例。 它将输入图像或文本转换为嵌入,该嵌入在同一语义空间中包含图像和文本的语义。
  • Titan Text 模型是生成式 LLM,适用于摘要、文本生成(例如,创建博客文章)、分类、开放式问答和信息提取等任务。 他们还接受过许多不同编程语言以及表格、JSON 和 csv 等富文本格式的培训。
  • Titan Image Generator G1 是一种生成基础模型,可从自然语言文本生成图像。 该模型还可用于编辑或生成现有或生成的图像的变体。

1.3、Llama

Llama 2 是一组经过预训练和微调的大型语言模型(LLM),其规模从 70 亿参数到 700 亿参数不等。 Llama 模型的关键特征之一是它能够生成连贯且上下文相关的文本。 这是通过使用注意力机制来实现的,该机制允许模型在生成输出时关注输入序列的不同部分。 此外,Llama 模型使用一种称为“掩码语言建模”的技术在大型文本语料库上对模型进行预训练,这有助于它学习预测句子中缺失的单词。
在这里插入图片描述

  • 超100万条的人工标注:经过微调的模型 Llama Chat 使用了公开的指令数据集和超过 100 万条人工标注。
  • 2 万亿个令牌训练而成:Llama 2 模型使用来自在线公共数据来源的 2 万亿个令牌进行训练。
  • 零基础设施管理:Amazon Bedrock 是第一个为 Llama 2 提供完全托管的 API 的公有云服务。各种规模的组织都可以访问 Amazon Bedrock 上的 Llama 2 Chat 模型,而无需管理底层基础设施。

Llama 模型已被证明在各种自然语言处理任务上表现良好,包括语言翻译、问答和文本摘要,并且还能够生成类似人类的文本,这使得 Llama 模型成为创意写作和其他应用程序的有用工具。 自然语言生成很重要。

总的来说,Llama 模型是强大且多功能的语言模型,可用于广泛的自然语言处理任务。 该模型能够生成连贯且上下文相关的文本,这使得它对于聊天机器人、虚拟助手和语言翻译等应用程序特别有用。

二、使用Amazon Bedrock 根据需求创建一个自己的对话应用

2.1、登录与授权

首先完成AWS账号登陆,并访问到Amazon Bedrock的UI:https://aws.amazon.com/cn/bedrock/?trk=d663ea2c-78d3-497f-a8c5-4bf7949cc694&sc_channel=el
在这里插入图片描述
其次完成模型授权,点击左侧导航的Overview标签,然后可以看到右侧的Spotlight板块,点击Request model access按钮,勾选需要的模型,如果要体验GPT-对话功能,必须要勾选任意一项Text标签的模型,如果需要体验Stable Diffusion-文本生成图像功能,必须要勾选带Image标签的模型,然后稍等片刻。

2.2、构建自己的对话应用

首先展开playgrounds栏目,然后点击Select model,选择需要使用的模型,这里选择使用Llama 2 Chat 70B进行演示:
在这里插入图片描述
然后进入对话页面,下侧为输入的prompt区域:
在这里插入图片描述
比如输入prompt:

您是一位有着9年经验与能力的互联网软文和高端文案撰写人,现在私域运营团队的文案策划。1、负责社群文案工作,编辑用户感兴趣的话题,保证社群活跃度,提升用户黏性;2、负责社群的人设定位及内容产出,内容的规划和撰写,包含内容策划、素材采集;3、负责通过内容运营挖掘用户需求提高粉丝活跃度、增强用户黏性和转化;4、深入了解品牌项目产品及资源,以及客户需求和产品特性为核心定制个性化方案;现在请帮我策划一个龙年抽奖活动软文

输出效果如下:
在这里插入图片描述

右侧我们可以修改模型超参数,可以对输出长度、温度、Top P值进行调整后继续测试。

三、Amazon Bedrock 入门

想要快速学习使用Amazon Bedrock 吗?《Amazon Bedrock 入门》带你免费、快速、简单上手 Amazon Bedrock!

在本入门课程中,你将了解 Amazon Bedrock 的优势、功能、典型使用案例、技术概念和成本。

https://study.163.com/course/introduction/1213665810.htm?from=AWS-social-FY24-KOC-HJS

在这里插入图片描述

在此课程中,你还将回顾使用 Amazon Bedrock 以及其他 Amazon Web Services 产品构建 Chatbot 解决方案的架构。无论您是初学者还是经验丰富的开发者,这个课程将为您提供一个全面的学习体验,并在这个充满创造力的旅程中取得丰硕的成果!

这篇关于Amazon Bedrock ——使用Prompt构建AI软文撰写师的生成式人工智能应用程序的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/818869

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

Linux join命令的使用及说明

《Linuxjoin命令的使用及说明》`join`命令用于在Linux中按字段将两个文件进行连接,类似于SQL的JOIN,它需要两个文件按用于匹配的字段排序,并且第一个文件的换行符必须是LF,`jo... 目录一. 基本语法二. 数据准备三. 指定文件的连接key四.-a输出指定文件的所有行五.-o指定输出

Linux jq命令的使用解读

《Linuxjq命令的使用解读》jq是一个强大的命令行工具,用于处理JSON数据,它可以用来查看、过滤、修改、格式化JSON数据,通过使用各种选项和过滤器,可以实现复杂的JSON处理任务... 目录一. 简介二. 选项2.1.2.2-c2.3-r2.4-R三. 字段提取3.1 普通字段3.2 数组字段四.

Linux kill正在执行的后台任务 kill进程组使用详解

《Linuxkill正在执行的后台任务kill进程组使用详解》文章介绍了两个脚本的功能和区别,以及执行这些脚本时遇到的进程管理问题,通过查看进程树、使用`kill`命令和`lsof`命令,分析了子... 目录零. 用到的命令一. 待执行的脚本二. 执行含子进程的脚本,并kill2.1 进程查看2.2 遇到的

详解SpringBoot+Ehcache使用示例

《详解SpringBoot+Ehcache使用示例》本文介绍了SpringBoot中配置Ehcache、自定义get/set方式,并实际使用缓存的过程,文中通过示例代码介绍的非常详细,对大家的学习或者... 目录摘要概念内存与磁盘持久化存储:配置灵活性:编码示例引入依赖:配置ehcache.XML文件:配置

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

k8s按需创建PV和使用PVC详解

《k8s按需创建PV和使用PVC详解》Kubernetes中,PV和PVC用于管理持久存储,StorageClass实现动态PV分配,PVC声明存储需求并绑定PV,通过kubectl验证状态,注意回收... 目录1.按需创建 PV(使用 StorageClass)创建 StorageClass2.创建 PV

Redis 基本数据类型和使用详解

《Redis基本数据类型和使用详解》String是Redis最基本的数据类型,一个键对应一个值,它的功能十分强大,可以存储字符串、整数、浮点数等多种数据格式,本文给大家介绍Redis基本数据类型和... 目录一、Redis 入门介绍二、Redis 的五大基本数据类型2.1 String 类型2.2 Hash

Redis中Hash从使用过程到原理说明

《Redis中Hash从使用过程到原理说明》RedisHash结构用于存储字段-值对,适合对象数据,支持HSET、HGET等命令,采用ziplist或hashtable编码,通过渐进式rehash优化... 目录一、开篇:Hash就像超市的货架二、Hash的基本使用1. 常用命令示例2. Java操作示例三

Linux创建服务使用systemctl管理详解

《Linux创建服务使用systemctl管理详解》文章指导在Linux中创建systemd服务,设置文件权限为所有者读写、其他只读,重新加载配置,启动服务并检查状态,确保服务正常运行,关键步骤包括权... 目录创建服务 /usr/lib/systemd/system/设置服务文件权限:所有者读写js,其他