python统计分析——单变量分布之量化变异度

2024-03-17 07:12

本文主要是介绍python统计分析——单变量分布之量化变异度,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

参考资料:python统计分析【托马斯】

1、极差

        极差仅仅是最高值和最低值之间的差异。使用函数为:numpy.ptp()。代码如下:

import numpy as npx=np.arange(1,11)
np.ptp(x)

        ptp代表“峰值到峰值”,唯一应该注意的异常值,即数据点的值比其他数据高或低很多。通常,这些点是由于样本选择或测量过程中的错误引起的。

        有许多检查异常值的测试。其中之一检查那些高于第三分位数1.5×四分位距(IQR)或低于第一分位数1.5×四分位距(IQR)的数据。

2、百分位数

        弄懂百分位数的最简单方法,就是首先定义累计分布函数(CDF):

CDF(x)=\int_{-\infty }^{x}PDF(x)dx

        CDF是PDF(概率密度函数)从负无穷大到给定值的积分,因此确定了低于该值的数据的百分比。了解了CDF之后,计算在a~b范围内知道值x的可能性就简单了:在a和b之间找到值得概率可由该范围内PDF的积分得到,并且可以通过相应的CDF值的差来得到:

P(a\leqslant X\leqslant b)=\int_{a}^{b}PDF(x)dx=CDF(b)-CDF(a)

        对于离散分布来说,积分就由求和代替。

        回到百分位数:这些只是CDF的逆函数,其给出低于数据中特定百分比的数据的值。虽然“百分位数”这个表达并不常常出现,但经常会遇到特定的百分位数。如下:

        ①为了获得包含95%的数据范围,我们必须找到 样本分布的2.5分位数和97.5分位数。

        ②50分位数就是中位数。

        ③另一个重要的就是四分位数,即25和75分位数。它们之间的差值称为四分位距(IQR).

3、标准差和方差

        样本方差的极大似然估计如下:

var=\frac{\sum_{i=1}^n(x_i-\bar{x})^2}{n}

        但上式系统性地低估了总体方差,因此本称为总体方差的“有偏估计”。换句话说,如果你选择了特定总体标准差的人群,并且重复1000次从该人群中选择n个随机样本,并计算每个样本的标准偏差,则这些样本标准差的平均值将低于总体表标准差。

        我们总是使用样本均值,使得给定的样本数据方差最小化,从而低估了总体的方差。所以群体方差的最佳无偏估计应该是:

var=\frac{\sum_{i=1}^n(x_i-\bar{x})^2}{n-1}

        本式即为样本方差。

        标准差是方差的平方根,样本标准差是样本方差的平方根:

s=\sqrt{var}

        在统计学中通常用σ表示总体标准差,用s表示样本标准差。

        python标准差函数为:numpy.std(),方差函数为:numpy.var();参数设置可参考:python统计分析——单变量描述统计-CSDN博客

代码操作如下:

data=np.arange(7,14)
# numpy默认用n还计算方差和标准差,即ddof=0。
# 为了能够得到样本方差和标准差,须设置ddof=1
np.std(data,ddof=1)

4、标准误

        标准误是系数标准差的估计。对于正态分布的数据,均值的样本标准误差(SE或SEM)是:

SEM=\frac{s}{\sqrt{n}}=\sqrt{\frac{\sum_{i=1}^n(x_i-\bar{x})^2}{n-1}}\times \frac{1}{\sqrt{n}}

5、置信区间

        在数据的统计分析中,经常估计参数的置信区间。α%的置信区间(CI)表示包含参数的真实值的范围,其可能性为α%。

        如果采样分布式对称的和单峰的(也就是说,在最大值的两边平滑地衰减),通常可以用下面公式来估计置信区间:

ci=mean\pm std \times N_{PPF}(\frac{1-\alpha}{2})

        其中,std为标准差,N_PPF是标准正态分布分布的百分点函数(PPF)。要计算95%的双侧置信区间,须计算标准正态分布分布的PPF(0.025),来得到置信区间的上下限。

        注①:计算平均值的置信区间,标准差必须用标准误代替

        注②:如果分布是偏斜的,上面的公式就不再适用。

这篇关于python统计分析——单变量分布之量化变异度的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/818207

相关文章

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法

基于Python开发Windows自动更新控制工具

《基于Python开发Windows自动更新控制工具》在当今数字化时代,操作系统更新已成为计算机维护的重要组成部分,本文介绍一款基于Python和PyQt5的Windows自动更新控制工具,有需要的可... 目录设计原理与技术实现系统架构概述数学建模工具界面完整代码实现技术深度分析多层级控制理论服务层控制注

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装

Python打包成exe常用的四种方法小结

《Python打包成exe常用的四种方法小结》本文主要介绍了Python打包成exe常用的四种方法,包括PyInstaller、cx_Freeze、Py2exe、Nuitka,文中通过示例代码介绍的非... 目录一.PyInstaller11.安装:2. PyInstaller常用参数下面是pyinstal

Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题

《Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题》在爬虫工程里,“HTTPS”是绕不开的话题,HTTPS为传输加密提供保护,同时也给爬虫带来证书校验、... 目录一、核心问题与优先级检查(先问三件事)二、基础示例:requests 与证书处理三、高并发选型:

Python中isinstance()函数原理解释及详细用法示例

《Python中isinstance()函数原理解释及详细用法示例》isinstance()是Python内置的一个非常有用的函数,用于检查一个对象是否属于指定的类型或类型元组中的某一个类型,它是Py... 目录python中isinstance()函数原理解释及详细用法指南一、isinstance()函数