GEE高阶案例——ee.Image和ee.ImageCollection的影像列表的可视化

2024-03-17 04:12

本文主要是介绍GEE高阶案例——ee.Image和ee.ImageCollection的影像列表的可视化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 ee.Image和ee.ImageCollection的利用列表进行可视化操作

这里我们主要的操作是利用简单的列表进行波段选择。可以利用[波段名称],[波段数字],[slice1:4]等等来实现我们遥感影像的选取。

代码:

安装python包

!pip install eemont
!pip install geemap

导入安装包和验证

import ee, eemont, geemap
import geemap.colormaps as cmMap = geemap.Map()

定义研究区

poi = ee.Geometry.PointFromQuery("Oporto, Portugal",user_agent = "eemont-tutorial-024")

影像处理分析

S2 = (ee.ImageCollection("COPERNICUS/S2_SR").filterBounds(poi).filterDate("2020-01-01","2020-07-01").preprocess().spectralIndices())

容器仿真方法

ee.ImageCollection
如果想知道图像集合中有多少幅图像,可以使用 len() 方法:

len(S2)

 73

如果要从集合中选择特定频段,可以使用 collection[band] 或 collection[[band1,band2,...,bandn]]:

RGB = S2[["B2","B3","B4"]]

 您还可以使用波段指数,或者数字或者slice等来实现这一功能:

RGB = S2["B[2-4]"]RGB = S2[[1,2,3]]RGB = S2[1:4]

使用容器模拟方法创建合成物!

Map = geemap.Map()
Map.addLayer(S2[[3,2,1]].median(),{"min":0,"max":0.3},"RGB")
Map.centerObject(poi)
Map

如果要从集合中选择图像,可将集合转换为列表,然后使用容器模拟方法!

我们将从集合中选择第一、第三和第五幅图像。

首先,我们将集合转换为列表:

S2list = S2.toList(S2.size())
S2list.getInfo()

'VEGETATION_PERCENTAGE': 6.85553, 'SOLAR_IRRADIANCE_B12': 85.25, 'SOLAR_IRRADIANCE_B10': 367.15, 'SENSOR_QUALITY': 'PASSED', 'SOLAR_IRRADIANCE_B11': 245.59, 'GENERATION_TIME': 1593324824000, 'SOLAR_IRRADIANCE_B8A': 955.32, 'FORMAT_CORRECTNESS': 'PASSED', 'CLOUD_COVERAGE_ASSESSMENT': 83.468688, 'THIN_CIRRUS_PERCENTAGE': 25.003883, 'system:time_end': 1593313613223, 'WATER_VAPOUR_RETRIEVAL_ACCURACY': 0, 'system:time_start': 1593313613223, 'DATASTRIP_ID': 'S2A_OPER_MSI_L2A_DS_EPAE_20200628T061344_S20200628T030457_N02.14', 'PROCESSING_BASELINE': '02.14', 'SENSING_ORBIT_NUMBER': 32, 'NODATA_PIXEL_PERCENTAGE': 38.487333, 'SENSING_ORBIT_DIRECTION': 'DESCENDING', 'GENERAL_QUALITY': 'PASSED', 'GRANULE_ID': 'L2A_T50TMK_A026198_20200628T030457', 'REFLECTANCE_CONVERSION_CORRECTION': 0.967843675317843, 'MEDIUM_PROBA_CLOUDS_PERCENTAGE': 47.631767, 'MEAN_INCIDENCE_AZIMUTH_ANGLE_B8': 104.057248542272, 'DATATAKE_TYPE': 'INS-NOBS', 'MEAN_INCIDENCE_AZIMUTH_ANGLE_B9': 105.861973902451, 'MEAN_INCIDENCE_AZIMUTH_ANGLE_B6': 104.999263430107, 'MEAN_INCIDENCE_AZIMUTH_ANGLE_B7': 105.19973338743, 'MEAN_INCIDENCE_AZIMUTH_ANGLE_B4': 104.599846509095, 'MEAN_INCIDENCE_ZENITH_ANGLE_B1': 9.26483116852418, 'NOT_VEGETATED_PERCENTAGE': 3.850959, 'MEAN_INCIDENCE_AZIMUTH_ANGLE_B5': 104.806888871887, 'RADIOMETRIC_QUALITY': 'PASSED', 'MEAN_INCIDENCE_AZIMUTH_ANGLE_B2': 103.845170510872, 'MEAN_INCIDENCE_AZIMUTH_ANGLE_B3': 104.253550988713, 'MEAN_INCIDENCE_ZENITH_ANGLE_B5': 9.16945293581117, 'MEAN_INCIDENCE_AZIMUTH_ANGLE_B1': 105.623602057599, 'MEAN_INCIDENCE_ZENITH_ANGLE_B4': 9.1511983118597, 'MEAN_INCIDENCE_ZENITH_ANGLE_B3': 9.12658446045674, 'MEAN_INCIDENCE_ZENITH_ANGLE_B2': 9.10159606126085, 'MEAN_INCIDENCE_ZENITH_ANGLE_B9': 9.29833105492727, 'MEAN_INCIDENCE_ZENITH_ANGLE_B8': 9.11119453954433, 'MEAN_INCIDENCE_ZENITH_ANGLE_B7': 9.21252733317911, 'DARK_FEATURES_PERCENTAGE': 0.355675, 'HIGH_PROBA_CLOUDS_PERCENTAGE': 10.833038, 'MEAN_INCIDENCE_ZENITH_ANGLE_B6': 9.18986663198901, 'UNCLASSIFIED_PERCENTAGE': 4.527044, 'MEAN_SOLAR_ZENITH_ANGLE': 22.5118973098276, 'MEAN_INCIDENCE_ZENITH_ANGLE_B8A': 9.2372672183666, 'RADIATIVE_TRANSFER_ACCURACY': 0, 'MGRS_TILE': '50TMK', 'CLOUDY_PIXEL_PERCENTAGE': 83.468688, 'PRODUCT_ID': 'S2A_MSIL2A_20200628T025551_N0214_R032_T50TMK_20200628T061344', 'MEAN_INCIDENCE_ZENITH_ANGLE_B10': 9.13676392418118, 'SOLAR_IRRADIANCE_B9': 812.92, 'SNOW_ICE_PERCENTAGE': 0, 'DEGRADED_MSI_DATA_PERCENTAGE': 0, 'MEAN_INCIDENCE_ZENITH_ANGLE_B11': 9.18102900320746, 'MEAN_INCIDENCE_ZENITH_ANGLE_B12': 9.23541231406127, 'SOLAR_IRRADIANCE_B6': 1287.61, 'MEAN_INCIDENCE_AZIMUTH_ANGLE_B10': 104.554556943066, 'SOLAR_IRRADIANCE_B5': 1424.64, 'MEAN_INCIDENCE_AZIMUTH_ANGLE_B11': 105.017646027147, 'SOLAR_IRRADIANCE_B8': 1041.63, 'MEAN_INCIDENCE_AZIMUTH_ANGLE_B12': 105.532199227014, 'SOLAR_IRRADIANCE_B7': 1162.08, 'SOLAR_IRRADIANCE_B2': 1959.66, 'SOLAR_IRRADIANCE_B1': 1884.69, 'SOLAR_IRRADIANCE_B4': 1512.06, 'GEOMETRIC_QUALITY': 'PASSED', 'SOLAR_IRRADIANCE_B3': 1823.24, 'system:asset_size': 930285505, 'WATER_PERCENTAGE': 0.939834, 'system:index': '20200628T025551_20200628T030457_T50TMK', 'DATATAKE_IDENTIFIER': 'GS2A_20200628T025551_026198_N02.14', 'AOT_RETRIEVAL_ACCURACY': 0, 'SPACECRAFT_NAME': 'Sentinel-2A', 'cloud_mask': {'type': 'Image', 'bands': [{'id': 'probability', 'data_type': {'type': 'PixelType', 'precision': 'int', 'min': 0, 'max': 255}, 'dimensions': [10980, 10980], 'crs': 'EPSG:32650', 'crs_transform': [10, 0, 399960, 0, -10, 4500000]}], 'version': 1593657504842083, 'id': 'COPERNICUS/S2_CLOUD_PROBABILITY/20200628T025551_20200628T030457_T50TMK', 'properties': {'system:time_start': 1593312951000, 'system:footprint': {'type': 'LinearRing', 'coordinates': [[115.83391273005041, 39.65570880191806], [115.83392735250536, 39.65570819516246], [117.11372157909372, 39.66150634210722], [117.11377544025689, 39.661542869738895], [117.1138348670573, 39.66157390309806], [117.11383854756858, 39.66158869507626], [117.11550249100466, 40.650753672685155], [117.11545428566758, 40.65079522150662], [117.11541344128565, 40.65084094968039], [117.11539396165452, 40.650843793685524], [115.81688569582906, 40.6448403917732], [115.81683171569112, 40.644803233824405], [115.81677204866992, 40.64477149287509], [115.81676861849282, 40.64475673572606], [115.82539420248055, 40.150295002117005], [115.83380892864993, 39.65579703594504], [115.83385712860958, 39.655756044964406], [115.83389828811886, 39.655710764692735], [115.83391273005041, 39.65570880191806]]}, 'system:time_end': 1593399351000, 'system:asset_size': 28499638, 'system:index': '20200628T025551_20200628T030457_T50TMK'}}, 'SATURATED_DEFECTIVE_PIXEL_PERCENTAGE': 0}}]

然后,我们就可以选择图像了! 

S2selected = S2list[[0,2,4]]

现在,我们在 S2selected 列表中有三幅图像:

len(S2selected)

这里是3景影像的长度

现在,让我们选择从第 21 张到最后一张的所有图片。

嘘!我们可以使用切片!

S2selected = S2list[20:]

看看我们有多少张影像!

len(S2selected)

52景影像

如果我们不想选择最后一幅图像,可以使用负指数!下面是一个例子:

S2selected = S2list[20:-5]
len(S2selected)

47
但它们是在 ee.List 对象中的 ee.Image 对象。我们可以保持这种状态,或者将它们转换成一个 ee.ImageCollection 对象!

S2selected = ee.ImageCollection(S2selected)

 ee.Image
我们还可以为 ee.Image 对象选择波段!

S2img = S2.first()

让我们选择 NDVI:

NDVI = S2img['NDVI']RGBimg = S2img[1:4]

可视化

Map = geemap.Map()
Map.addLayer(S2img["NDVI"],{"min":0,"max":1,"palette":cm.palettes.ndvi},"NDVI")
Map.centerObject(poi)
Map

这篇关于GEE高阶案例——ee.Image和ee.ImageCollection的影像列表的可视化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/817762

相关文章

python中的高阶函数示例详解

《python中的高阶函数示例详解》在Python中,高阶函数是指接受函数作为参数或返回函数作为结果的函数,下面:本文主要介绍python中高阶函数的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录1.定义2.map函数3.filter函数4.reduce函数5.sorted函数6.自定义高阶函数

Python 常用数据类型详解之字符串、列表、字典操作方法

《Python常用数据类型详解之字符串、列表、字典操作方法》在Python中,字符串、列表和字典是最常用的数据类型,它们在数据处理、程序设计和算法实现中扮演着重要角色,接下来通过本文给大家介绍这三种... 目录一、字符串(String)(一)创建字符串(二)字符串操作1. 字符串连接2. 字符串重复3. 字

Java中的分布式系统开发基于 Zookeeper 与 Dubbo 的应用案例解析

《Java中的分布式系统开发基于Zookeeper与Dubbo的应用案例解析》本文将通过实际案例,带你走进基于Zookeeper与Dubbo的分布式系统开发,本文通过实例代码给大家介绍的非常详... 目录Java 中的分布式系统开发基于 Zookeeper 与 Dubbo 的应用案例一、分布式系统中的挑战二

Java 中的 equals 和 hashCode 方法关系与正确重写实践案例

《Java中的equals和hashCode方法关系与正确重写实践案例》在Java中,equals和hashCode方法是Object类的核心方法,广泛用于对象比较和哈希集合(如HashMa... 目录一、背景与需求分析1.1 equals 和 hashCode 的背景1.2 需求分析1.3 技术挑战1.4

Java中实现对象的拷贝案例讲解

《Java中实现对象的拷贝案例讲解》Java对象拷贝分为浅拷贝(复制值及引用地址)和深拷贝(递归复制所有引用对象),常用方法包括Object.clone()、序列化及JSON转换,需处理循环引用问题,... 目录对象的拷贝简介浅拷贝和深拷贝浅拷贝深拷贝深拷贝和循环引用总结对象的拷贝简介对象的拷贝,把一个

Java中最全最基础的IO流概述和简介案例分析

《Java中最全最基础的IO流概述和简介案例分析》JavaIO流用于程序与外部设备的数据交互,分为字节流(InputStream/OutputStream)和字符流(Reader/Writer),处理... 目录IO流简介IO是什么应用场景IO流的分类流的超类类型字节文件流应用简介核心API文件输出流应用文

MyBatis分页查询实战案例完整流程

《MyBatis分页查询实战案例完整流程》MyBatis是一个强大的Java持久层框架,支持自定义SQL和高级映射,本案例以员工工资信息管理为例,详细讲解如何在IDEA中使用MyBatis结合Page... 目录1. MyBATis框架简介2. 分页查询原理与应用场景2.1 分页查询的基本原理2.1.1 分

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

Java 正则表达式的使用实战案例

《Java正则表达式的使用实战案例》本文详细介绍了Java正则表达式的使用方法,涵盖语法细节、核心类方法、高级特性及实战案例,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要... 目录一、正则表达式语法详解1. 基础字符匹配2. 字符类([]定义)3. 量词(控制匹配次数)4. 边

Python Counter 函数使用案例

《PythonCounter函数使用案例》Counter是collections模块中的一个类,专门用于对可迭代对象中的元素进行计数,接下来通过本文给大家介绍PythonCounter函数使用案例... 目录一、Counter函数概述二、基本使用案例(一)列表元素计数(二)字符串字符计数(三)元组计数三、C