spacy进行简单的自然语言处理的学习

2024-03-17 01:44

本文主要是介绍spacy进行简单的自然语言处理的学习,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

自然语言处理基本概念

概念:自然语言处理,是让机器理解人的语言的过程。
作用:通过使用自然语言处理,机器可以理解人的语言,从而进行语义分析,例如:从一句话中判断喜怒哀乐;从一段文字中判断是否存在存在诈骗…等等
语义分析和单纯的关键词简单检索有什么区别:
比如:对于a.你吃饭了吗? b.你?饭?吃?了?吗,语义分析可以明白这两句话意思大致相同,但是关键词检索大概率无法识别。
原理:基于多层神经网络

如果理解自然语言处理

首先要明白,人类理解一句话是一个什么过程,当人听到一句话的时候,通常通过这段话里的音素(abcd)、词汇,语法,上下文,所以在自然语言处理中,也需要针对这四个部分进行处理,那这四个过程就被称为:

自然语言处理的四个过程

  • Tokenisation 标记化
  • Part-of-speech tagging 将部分语音进行标记
  • Syntactic Parsing: constituency and dependency 同步解析
  • Name Entity Recognition 名称实体识别

使用方法

  1. NLTK
  2. spaCy
  3. Stanford CoreNLP
  4. Jieba(主要应用于中文)

这里选择spacy作为例子

官方文档地址
pip install spacypython -m spacy download en_core_web_sm

任务一:NLP task 1: Tokenisation

tokenisation是通过使用数据处理的方式应用在文本上,将文本分成一个个小单元,当然这些单元在英语中就是一个个单词,但是在中文中就是一个个词语注意不是单个文字!
tokenisation是很多自然语言处理的第一个步骤,因为通过这种方式可以先简单的分析我们所要分析的文本内容。

spacy如何工作呢?

spacy使用直接套用文本内容的方法进行分词,
可以查看官网如下:
在这里插入图片描述
这里使用这样一句话作为例子The prime minister has said he will formally invite Joe Biden to Northern lrelandto mark the 25th anniversary of the Good Friday Agreement.

import spacy
nlp = spacy.load("en_core_web_sm")
import en_core_web_smnlp = en_core_web_sm.load()
doc = nlp("The prime minister has said he will formally invite Joe Biden to Northern lrelandto mark the 25th anniversary of the Good Friday Agreement.")
for token in doc:print(token)

结果:
在这里插入图片描述

任务二:NLP task : POS tagging

是标注各个词语性质的过程,这对于整个文本的阅读是十分必要的,能够给各个词语分配他的词性。
spacy的词性介绍:
在这里插入图片描述
还是以上面的文本为例

# pos using spacy
import spacy
def pos_tagging_s(sen):#print(sen.text)#print(sen[1].pos_)#print(sen[1].tag_)#print(spacy.explain(sen[1].tag_))for word in sen:print("Word:", word.text, "\t","POS Tag:", word.pos_,"\t", "Tag for Word:", word.tag_,"Explanatation:", spacy.explain(word.tag_), "\n")sp = spacy.load('en_core_web_sm')
sentence = sp("The prime minister has said he will formally invite Joe Biden to Northern lrelandto mark the 25th anniversary of the Good Friday Agreement.")
pos_tagging_s(sentence)

执行结果
在这里插入图片描述

任务三:Syntactic Parsing: constituency and dependency

这个过程通过分析语法,进行选取以及分析整段文字的依赖关系
还是以上面文字为例

#dependency parsing
import spacy
nlp = spacy.load("en_core_web_sm")
piano_text = "The prime minister has said he will formally invite Joe Biden to Northern lrelandto mark the 25th anniversary of the Good Friday Agreement."
piano_doc = nlp(piano_text)
for token in piano_doc:print(f""" TOKEN: {token.text} ===== {token.tag_ = } {token.head.text = } {token.dep_ = }""")

在这个例子中有24种很多种关系,以部分为例。
The prime minister
这句话中的关键是minister,那么对于theprime他们就是依赖于minister
再以he will formally invite
这句话的关键是invite,那么对于he will formally这三个词语,都是依赖于invite的,那invite呢?翻译上面的句子,可以发现,invite其实是said的一个定语,因此是依赖于said的。

那么可以很明显的发现spacy的依赖关系分析是很强大并且有效的,可以帮助我们很快的分析出这段话中依赖关系,以便于之后机器理解语义。
在这里插入图片描述

任务四:Name Entity Recognition

进行一个简单的语义分析,其实就是把主谓宾定状补,转换成主谓宾,提取其中的主要信息进行分析。

piano_class_text = "The prime minister has said he will formally invite Joe Biden to Northern lrelandto mark the 25th anniversary of the Good Friday Agreement."piano_class_doc = nlp(piano_class_text)for ent in piano_class_doc.ents:print(f"""{ent.text = }{ent.start_char = } {ent.end_char = }{ent.label_ = }spacy.explain('{ent.label_}') = {spacy.explain(ent.label_)}""")

结果:
分别是
文字
文字开头位置结束位置
文字属于什么内容
文字的简单解释
在这里插入图片描述

这篇关于spacy进行简单的自然语言处理的学习的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/817422

相关文章

Spring Boot @RestControllerAdvice全局异常处理最佳实践

《SpringBoot@RestControllerAdvice全局异常处理最佳实践》本文详解SpringBoot中通过@RestControllerAdvice实现全局异常处理,强调代码复用、统... 目录前言一、为什么要使用全局异常处理?二、核心注解解析1. @RestControllerAdvice2

Golang如何对cron进行二次封装实现指定时间执行定时任务

《Golang如何对cron进行二次封装实现指定时间执行定时任务》:本文主要介绍Golang如何对cron进行二次封装实现指定时间执行定时任务问题,具有很好的参考价值,希望对大家有所帮助,如有错误... 目录背景cron库下载代码示例【1】结构体定义【2】定时任务开启【3】使用示例【4】控制台输出总结背景

使用Python进行GRPC和Dubbo协议的高级测试

《使用Python进行GRPC和Dubbo协议的高级测试》GRPC(GoogleRemoteProcedureCall)是一种高性能、开源的远程过程调用(RPC)框架,Dubbo是一种高性能的分布式服... 目录01 GRPC测试安装gRPC编写.proto文件实现服务02 Dubbo测试1. 安装Dubb

电脑提示xlstat4.dll丢失怎么修复? xlstat4.dll文件丢失处理办法

《电脑提示xlstat4.dll丢失怎么修复?xlstat4.dll文件丢失处理办法》长时间使用电脑,大家多少都会遇到类似dll文件丢失的情况,不过,解决这一问题其实并不复杂,下面我们就来看看xls... 在Windows操作系统中,xlstat4.dll是一个重要的动态链接库文件,通常用于支持各种应用程序

SQL Server数据库死锁处理超详细攻略

《SQLServer数据库死锁处理超详细攻略》SQLServer作为主流数据库管理系统,在高并发场景下可能面临死锁问题,影响系统性能和稳定性,这篇文章主要给大家介绍了关于SQLServer数据库死... 目录一、引言二、查询 Sqlserver 中造成死锁的 SPID三、用内置函数查询执行信息1. sp_w

Java对异常的认识与异常的处理小结

《Java对异常的认识与异常的处理小结》Java程序在运行时可能出现的错误或非正常情况称为异常,下面给大家介绍Java对异常的认识与异常的处理,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参... 目录一、认识异常与异常类型。二、异常的处理三、总结 一、认识异常与异常类型。(1)简单定义-什么是

基于Python实现一个简单的题库与在线考试系统

《基于Python实现一个简单的题库与在线考试系统》在当今信息化教育时代,在线学习与考试系统已成为教育技术领域的重要组成部分,本文就来介绍一下如何使用Python和PyQt5框架开发一个名为白泽题库系... 目录概述功能特点界面展示系统架构设计类结构图Excel题库填写格式模板题库题目填写格式表核心数据结构

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Golang 日志处理和正则处理的操作方法

《Golang日志处理和正则处理的操作方法》:本文主要介绍Golang日志处理和正则处理的操作方法,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录1、logx日志处理1.1、logx简介1.2、日志初始化与配置1.3、常用方法1.4、配合defer

springboot加载不到nacos配置中心的配置问题处理

《springboot加载不到nacos配置中心的配置问题处理》:本文主要介绍springboot加载不到nacos配置中心的配置问题处理,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录springboot加载不到nacos配置中心的配置两种可能Spring Boot 版本Nacos