Java-PriorityQueue源码分析

2024-03-17 01:04

本文主要是介绍Java-PriorityQueue源码分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

PriorityQueue 源码分析

Java中的PriorityQueue采用的是堆这种数据结构来实现的,而存储堆采用的则是数组。

堆是一个完全二叉树,堆中每一个节点的值都必须大于等于(或小于等于)其子树中每个节点的值,对于每个节点的值都大于等于子树中每个节点值的堆,我们叫做大顶堆,对于每个节点的值都小于等于子树中每个节点值的堆,我们叫做小顶堆。

image.png

如何实现一个堆

image.png

可以看出来,数组中下标为i的节点,其左子节点就是下标为 i*2+1 的节点,右子节点则是下标为 i*2+2 的节点

新增

新增的时候,我们将插入的数据暂时放置到数组中的最后一个位置,运气好的话,它就刚好满足堆特性,也不需要移动元素了。不好的话就需要移动元素位置了。

移动过程如下:新插入的节点与父节点比较大小,如果不满足子节点大于等于父节点的大小关系(小顶堆),则互换两个节点,一直重复这个过程,直到父子节点满足刚才说的那种关系。

image.png

PriorityQueue数据结构如下:

public class PriorityQueue<E> extends AbstractQueue<E>implements java.io.Serializable {private static final int DEFAULT_INITIAL_CAPACITY = 11;// 数组/*** Priority queue represented as a balanced binary heap: the two* children of queue[n] are queue[2*n+1] and queue[2*(n+1)].  The* priority queue is ordered by comparator, or by the elements'* natural ordering, if comparator is null: For each node n in the* heap and each descendant d of n, n <= d.  The element with the* lowest value is in queue[0], assuming the queue is nonempty.*//*优先级队列表示为平衡的二进制堆:两者队列[n]的子队列是左子树队列[2*n+1]和右子数队列[2*(n+1)]。的优先级队列由比较器或元素的自然排序,如果comparator为空:对于中每个节点n和n的每个后代d, n <= d最小值在队列[0]中,假设队列非空。*/transient Object[] queue;// 数组中元素个数private int size = 0;}

总结下插入元素时的主要过程

  1. 判断插入元素是否为空,为空则抛出空指针异常

  2. 在判断数组是否需要扩容,如果是则进行扩容

  3. 如果是第一次插入元素,则放入数组的第一个位置

  4. 如果不是则进行堆化过程

    1. 找到父节点位置 : (k-1) >>> 1
    2. 判断插入元素的值是否大于父节点(小顶堆),如果是则结束堆化过程
    3. 如果不是则交换元素位置
    4. 持续上面的1,2,3步骤,直到插入的节点已经是堆顶结点(k==0)

public boolean add(E e) {return offer(e);
}// 如果插入空元素,则抛出空指针异常
public boolean offer(E e) {if (e == null)throw new NullPointerException();modCount++;int i = size;if (i >= queue.length)  //扩容grow(i + 1);size = i + 1;// 第一次插入放入数组的第一个位置(下标从0开始)if (i == 0)queue[0] = e;else siftUp(i, e); //堆化过程return true;
}//  如果插入元素超过队列的长度,则进行扩容: 如果小于64双倍扩容,大于等于50%
private void grow(int minCapacity) {int oldCapacity = queue.length;// Double size if small; else grow by 50%int newCapacity = oldCapacity + ((oldCapacity < 64) ?(oldCapacity + 2) :(oldCapacity >> 1));// overflow-conscious codeif (newCapacity - MAX_ARRAY_SIZE > 0)newCapacity = hugeCapacity(minCapacity);queue = Arrays.copyOf(queue, newCapacity);
}// 堆化过程
private void siftUp(int k, E x) {if (comparator != null) // 有比较器的情况siftUpUsingComparator(k, x);else  // 默认情况siftUpComparable(k, x);
}private void siftUpComparable(int k, E x) {Comparable<? super E> key = (Comparable<? super E>) x;while (k > 0) {// 1. 父节点位置 (k-1)/2,这里采用无符号右移(值为整数)int parent = (k - 1) >>> 1;Object e = queue[parent];// 2. 如果要插入的元素大于父节点元素的值,则结束堆化过程if (key.compareTo((E) e) >= 0)break;// 3. 交换元素位置queue[k] = e;k = parent;}queue[k] = key;
}
删除

对于小顶堆而言,当删除堆顶元素之后,就需要把第二小的元素放到堆顶,那么第二小的元素就会出现在左右子节点中。当删除后,如果我们还是迭代的从左右子节点中选择最小元素放入堆顶,就会造成数组空洞,我用下面的图来演示这个问题。

image.png

我们可以在删除堆顶元素的时候,将最后一个元素拿来补位。由于在堆化的过程中,都是交换操作,就不会出现数组空洞了。

image.png

// k=0, x=queue[size-1]private void siftDownComparable(int k, E x) {Comparable<? super E> key = (Comparable<? super E>)x;int half = size >>> 1;        // loop while a non-leafwhile (k < half) {int child = (k << 1) + 1; // assume left child is least// 找到左右子节点中小的那个节点Object c = queue[child];int right = child + 1;if (right < size &&((Comparable<? super E>) c).compareTo((E) queue[right]) > 0)c = queue[child = right];// 如果比小的那个节点值还要小,则循环结束if (key.compareTo((E) c) <= 0)break;// 移动数据queue[k] = c;k = child;}queue[k] = key;
}

这篇关于Java-PriorityQueue源码分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/817322

相关文章

Spring事务传播机制最佳实践

《Spring事务传播机制最佳实践》Spring的事务传播机制为我们提供了优雅的解决方案,本文将带您深入理解这一机制,掌握不同场景下的最佳实践,感兴趣的朋友一起看看吧... 目录1. 什么是事务传播行为2. Spring支持的七种事务传播行为2.1 REQUIRED(默认)2.2 SUPPORTS2

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

Java进程异常故障定位及排查过程

《Java进程异常故障定位及排查过程》:本文主要介绍Java进程异常故障定位及排查过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、故障发现与初步判断1. 监控系统告警2. 日志初步分析二、核心排查工具与步骤1. 进程状态检查2. CPU 飙升问题3. 内存

java中新生代和老生代的关系说明

《java中新生代和老生代的关系说明》:本文主要介绍java中新生代和老生代的关系说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、内存区域划分新生代老年代二、对象生命周期与晋升流程三、新生代与老年代的协作机制1. 跨代引用处理2. 动态年龄判定3. 空间分

Java设计模式---迭代器模式(Iterator)解读

《Java设计模式---迭代器模式(Iterator)解读》:本文主要介绍Java设计模式---迭代器模式(Iterator),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录1、迭代器(Iterator)1.1、结构1.2、常用方法1.3、本质1、解耦集合与遍历逻辑2、统一

Java内存分配与JVM参数详解(推荐)

《Java内存分配与JVM参数详解(推荐)》本文详解JVM内存结构与参数调整,涵盖堆分代、元空间、GC选择及优化策略,帮助开发者提升性能、避免内存泄漏,本文给大家介绍Java内存分配与JVM参数详解,... 目录引言JVM内存结构JVM参数概述堆内存分配年轻代与老年代调整堆内存大小调整年轻代与老年代比例元空

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

Java 线程安全与 volatile与单例模式问题及解决方案

《Java线程安全与volatile与单例模式问题及解决方案》文章主要讲解线程安全问题的五个成因(调度随机、变量修改、非原子操作、内存可见性、指令重排序)及解决方案,强调使用volatile关键字... 目录什么是线程安全线程安全问题的产生与解决方案线程的调度是随机的多个线程对同一个变量进行修改线程的修改操

从原理到实战深入理解Java 断言assert

《从原理到实战深入理解Java断言assert》本文深入解析Java断言机制,涵盖语法、工作原理、启用方式及与异常的区别,推荐用于开发阶段的条件检查与状态验证,并强调生产环境应使用参数验证工具类替代... 目录深入理解 Java 断言(assert):从原理到实战引言:为什么需要断言?一、断言基础1.1 语

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1