[海军国际项目办公室]二叉搜索树

2024-03-16 22:48

本文主要是介绍[海军国际项目办公室]二叉搜索树,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

二叉搜索树

题解

首先,我们发现对于任何一棵子树内,他所包含带你的权值映射到我们所有加入了树内的点一定是连续的。
所以如果我们倒着来,每次将两棵子树接在一个根上,接出来的根的值域也一定是连续的,我们可以考虑区间dp。
对于顺序固定的点,我们明显可以直接知道它两边的子树是哪些,直接连起来即可。
对于那些顺序不顾定的点,我们就只能通过区间dp进行处理。
但事实上,我们每次 d p dp dp的必须是一个连续段,也就是说,我们总共的 d p dp dp总共会被按照 [ 1 , l ) [1,l) [1,l)建出来的树分为多个小段,我们要对这些小段内部分别进行区间dp。
我们不妨将 [ l , r ] [l,r] [l,r]中的点全部按照大小排序,记 d p l , r dp_{l,r} dpl,r表示值域范围为 [ a l , a r ] [a_{l},a_{r}] [al,ar]的点所构成的子树的深度和,容易得到转移方程式
d p l , r = max ⁡ m i d = l r d p l , m i d − 1 + d p m i d + r , r + r − l dp_{l,r}=\max_{mid=l}^{r}dp_{l,mid-1+dp_{mid+r,r}}+r-l dpl,r=mid=lmaxrdpl,mid1+dpmid+r,r+rl
但显然这样是不完全的,因为我们要考虑后面那些顺序固定的点的贡献,也就是说,如果我们枚举的根恰好是左右端点之一,我们要将它那一侧的顺序固定的点所建成的子树大小加进去。
求出这个这一段区间的 d p dp dp值后,我们可以随便钦定一个节点作为根,然后继续处理前面那一段。
至于维护某个节点所处子树的根,我们可以用并查集进行维护。

时间复杂度 O ( α ( n ) n + ( r − l ) 3 ) O\left(\alpha(n)n+(r-l)^3\right) O(α(n)n+(rl)3)

源码

#include<bits/stdc++.h> 
using namespace std;
#define MAXN 100005
#define lowbit(x) (x&-x)
#define reg register
#define pb push_back
#define mkpr make_pair
#define fir first
#define sec second
#define lson (rt<<1)
#define rson (rt<<1|1)
typedef long long LL;
typedef unsigned long long uLL;
const LL INF=0x3f3f3f3f3f3f3f3f;
const int mo=1e9+7;
const int inv2=499122177;
const int jzm=2333;
const int zero=10000;
const int lim=30000;
const int orG=3,invG=332748118;
const double Pi=acos(-1.0);
const double eps=1e-5;
typedef pair<int,int> pii;
template<typename _T>
_T Fabs(_T x){return x<0?-x:x;}
template<typename _T>
void read(_T &x){_T f=1;x=0;char s=getchar();while(s>'9'||s<'0'){if(s=='-')f=-1;s=getchar();}while('0'<=s&&s<='9'){x=(x<<3)+(x<<1)+(s^48);s=getchar();}x*=f;
}
template<typename _T>
void print(_T x){if(x<0){x=(~x)+1;putchar('-');}if(x>9)print(x/10);putchar(x%10+'0');}
LL gcd(LL a,LL b){return !b?a:gcd(b,a%b);}
int add(int x,int y,int p){return x+y<p?x+y:x+y-p;}
void Add(int &x,int y,int p){x=add(x,y,p);}
int qkpow(int a,int s,int p){int t=1;while(s){if(s&1LL)t=1ll*a*t%p;a=1ll*a*a%p;s>>=1LL;}return t;}
int n,b[MAXN],fa[MAXN],L[MAXN],R[MAXN],l,r;LL dp[MAXN],g[405][405]; 
int findSet(int x){return fa[x]==x?x:fa[x]=findSet(fa[x]);}
signed main(){read(n);for(int i=1;i<=n;i++)read(b[i]);read(l);read(r);for(int i=n;i>r;i--){fa[b[i]]=b[i];L[b[i]]=b[i];R[b[i]]=b[i];dp[b[i]]=1;if(fa[b[i]-1]){int x=findSet(b[i]-1);L[b[i]]=L[x];dp[b[i]]+=dp[x]+1ll*(R[x]-L[x]+1);fa[x]=b[i];}if(fa[b[i]+1]){int x=findSet(b[i]+1);R[b[i]]=R[x];dp[b[i]]+=dp[x]+1ll*(R[x]-L[x]+1);fa[x]=b[i];}}sort(b+l,b+r+1);for(int i=l,j;i<=r;i=j+1){j=i;while(j<r){if(b[j+1]==b[j]+1){j++;continue;}if(!fa[b[j]+1]||!fa[b[j+1]-1])break;if(findSet(b[j]+1)==findSet(b[j+1]-1)){j++;continue;}break;}for(int len=1;len<=j-i+1;len++)for(int li=1,ri=len;ri<=j-i+1;li++,ri++){g[li][ri]=INF;for(int mid=li;mid<=ri;mid++){LL tmp=0;int lt=b[li+i-1]-1,rt=b[ri+i-1]+1;if(li==mid){if(fa[lt])tmp+=dp[findSet(lt)];}else tmp+=g[li][mid-1];if(ri==mid){if(fa[rt])tmp+=dp[findSet(rt)];}else tmp+=g[mid+1][ri];g[li][ri]=min(g[li][ri],tmp); }int lt=fa[b[li+i-1]-1]?L[findSet(b[li+i-1]-1)]:b[li+i-1];int rt=fa[b[ri+i-1]+1]?R[findSet(b[ri+i-1]+1)]:b[ri+i-1];g[li][ri]+=1ll*(rt-lt+1);}for(int k=i;k<=j;k++){fa[b[k]]=b[k];L[b[k]]=b[k];R[b[k]]=b[k];if(fa[b[k]-1]){int x=findSet(b[k]-1);fa[x]=b[k];L[b[k]]=L[x];}if(fa[b[k]+1]){int x=findSet(b[k]+1);fa[x]=b[k];R[b[k]]=R[x];}}	dp[findSet(b[j])]=g[1][j-i+1];}for(int i=l-1;i>0;i--){fa[b[i]]=b[i];L[b[i]]=b[i];R[b[i]]=b[i];dp[b[i]]=1;if(fa[b[i]-1]){int x=findSet(b[i]-1);L[b[i]]=L[x];dp[b[i]]+=dp[x]+1ll*(R[x]-L[x]+1);fa[x]=b[i];}if(fa[b[i]+1]){int x=findSet(b[i]+1);R[b[i]]=R[x];dp[b[i]]+=dp[x]+1ll*(R[x]-L[x]+1);fa[x]=b[i];}}printf("%lld\n",dp[findSet(b[1])]);return 0;
}

谢谢!!!

这篇关于[海军国际项目办公室]二叉搜索树的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/816978

相关文章

vite搭建vue3项目的搭建步骤

《vite搭建vue3项目的搭建步骤》本文主要介绍了vite搭建vue3项目的搭建步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录1.确保Nodejs环境2.使用vite-cli工具3.进入项目安装依赖1.确保Nodejs环境

idea+spring boot创建项目的搭建全过程

《idea+springboot创建项目的搭建全过程》SpringBoot是Spring社区发布的一个开源项目,旨在帮助开发者快速并且更简单的构建项目,:本文主要介绍idea+springb... 目录一.idea四种搭建方式1.Javaidea命名规范2JavaWebTomcat的安装一.明确tomcat

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装

uni-app小程序项目中实现前端图片压缩实现方式(附详细代码)

《uni-app小程序项目中实现前端图片压缩实现方式(附详细代码)》在uni-app开发中,文件上传和图片处理是很常见的需求,但也经常会遇到各种问题,下面:本文主要介绍uni-app小程序项目中实... 目录方式一:使用<canvas>实现图片压缩(推荐,兼容性好)示例代码(小程序平台):方式二:使用uni

MyCat分库分表的项目实践

《MyCat分库分表的项目实践》分库分表解决大数据量和高并发性能瓶颈,MyCat作为中间件支持分片、读写分离与事务处理,本文就来介绍一下MyCat分库分表的实践,感兴趣的可以了解一下... 目录一、为什么要分库分表?二、分库分表的常见方案三、MyCat简介四、MyCat分库分表深度解析1. 架构原理2. 分

linux查找java项目日志查找报错信息方式

《linux查找java项目日志查找报错信息方式》日志查找定位步骤:进入项目,用tail-f实时跟踪日志,tail-n1000查看末尾1000行,grep搜索关键词或时间,vim内精准查找并高亮定位,... 目录日志查找定位在当前文件里找到报错消息总结日志查找定位1.cd 进入项目2.正常日志 和错误日

在.NET项目中嵌入Python代码的实践指南

《在.NET项目中嵌入Python代码的实践指南》在现代开发中,.NET与Python的协作需求日益增长,从机器学习模型集成到科学计算,从脚本自动化到数据分析,然而,传统的解决方案(如HTTPAPI或... 目录一、CSnakes vs python.NET:为何选择 CSnakes?二、环境准备:从 Py

基于 Cursor 开发 Spring Boot 项目详细攻略

《基于Cursor开发SpringBoot项目详细攻略》Cursor是集成GPT4、Claude3.5等LLM的VSCode类AI编程工具,支持SpringBoot项目开发全流程,涵盖环境配... 目录cursor是什么?基于 Cursor 开发 Spring Boot 项目完整指南1. 环境准备2. 创建

Three.js构建一个 3D 商品展示空间完整实战项目

《Three.js构建一个3D商品展示空间完整实战项目》Three.js是一个强大的JavaScript库,专用于在Web浏览器中创建3D图形,:本文主要介绍Three.js构建一个3D商品展... 目录引言项目核心技术1. 项目架构与资源组织2. 多模型切换、交互热点绑定3. 移动端适配与帧率优化4. 可

sky-take-out项目中Redis的使用示例详解

《sky-take-out项目中Redis的使用示例详解》SpringCache是Spring的缓存抽象层,通过注解简化缓存管理,支持Redis等提供者,适用于方法结果缓存、更新和删除操作,但无法实现... 目录Spring Cache主要特性核心注解1.@Cacheable2.@CachePut3.@Ca