[硫化铂]守序划分问题

2024-03-16 22:32
文章标签 问题 划分 硫化 守序

本文主要是介绍[硫化铂]守序划分问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

守序划分问题

题目大意

在这里插入图片描述
在这里插入图片描述

题解

Province Team Selection=PTS=PtS=硫化铂,所以就叫这段时间的模拟赛题硫化铂吧。
结论题,我竟然没有想到

首先,既然是结论题,那么有结论,如果我们的一种划分所有集合方案使得 min ⁡ i ∈ S A i ⩾ max ⁡ i ∉ S A i \min_{i\in S}A_i\geqslant\max_{i\not \in S} A_{i} miniSAimaxiSAi,那么一定不合法。
必要性是显然的,因为这样的话属于这两个集合内的集合肯定是不能相邻的,而它们因为无论怎么放,都要求这两个集合的点存分割点,使得需要 min ⁡ i ∈ S A i ⩽ max ⁡ i ∉ S A i \min_{i\in S}A_{i}\leqslant \max_{i\not \in S}A_i miniSAimaxiSAi
充分性也是可以证明的,如果满足这个条件我们一定能给出一种构造方法。
我们可以先将所有的 A A A max ⁡ A i \max A_i maxAi的大小从左往右放置,这样的话 ∀ i ∈ [ 2 , m ] , max ⁡ A p i > min ⁡ A p i − 1 \forall i\in[2,m],\max A_{p_i}>\min A_{p_{i-1}} i[2,m],maxApi>minApi1是一定成立的。
现在我们的问题是可能会有 min ⁡ A p n > max ⁡ A p 1 \min A_{p_n}>\max A_{p_1} minApn>maxAp1。但显然存在 k k k使得 min ⁡ A p k < min ⁡ A p n < max ⁡ A p k < max ⁡ A p n \min A_{p_k}<\min A_{p_n}<\max A_{p_k}<\max A_{p_n} minApk<minApn<maxApk<maxApn,否则我们上面的条件一定不成立,我们可以将 A p n A_{p_n} Apn与它大小上被完全包含的集合的集合当作被割裂出去的集合。
故我们可以将 p k p_k pk p n p_n pn交换一下,使得 max ⁡ A p n \max A_{p_n} maxApn变小,可以发现事实上我们可以不断重复这个过程知道我们的 max ⁡ A p 1 \max A_{p_1} maxAp1可以接上来。
于是我们就构造除了一种合法的方案,也就证明了它的充分性。

现在我们考虑如何统计我们的方案数。
其实上面的结论相当于这 m m m条线段一定是联通的,也就是说,当我们建立新的左端点时,之前已经建立的左端点对应的右端点一定尚未确立下来,否则就不联通了。
我们从小到大,将一个一个数逐步加入线段。
我们定义 d p i , j , k dp_{i,j,k} dpi,j,k表示枚举到第 i i i个点,已经确立了 j j j条线段的左端点,其中有 k k k条的右端点尚未确立。
转移比较好想,枚举这个点是用来新建立线段,不做端点地加入一条线段,或者作为一条线段的右端点,就行了。只要新线段成立时左端点不是所有左端点都右端点就好。

时间复杂度 O ( n m 2 ) O\left(nm^2\right) O(nm2)

源码

#include<bits/stdc++.h>
using namespace std;
#define MAXN 505
#define lowbit(x) (x&-x)
#define reg register
#define pb push_back
#define mkpr make_pair
#define fir first
#define sec second
typedef long long LL;
typedef unsigned long long uLL; 
typedef long double ld;
typedef pair<int,int> pii;
const int INF=0x3f3f3f3f;
const int mo=998244353;
const int mod=1e5+3;
const int inv2=5e8+4;
const int jzm=2333;
const int zero=20000;
const int n1=1000;
const int M=100000;
const int orG=3,ivG=332748118;
const long double Pi=acos(-1.0);
const double eps=1e-12;
template<typename _T>
_T Fabs(_T x){return x<0?-x:x;}
template<typename _T>
void read(_T &x){_T f=1;x=0;char s=getchar();while(s>'9'||s<'0'){if(s=='-')f=-1;s=getchar();}while('0'<=s&&s<='9'){x=(x<<3)+(x<<1)+(s^48);s=getchar();}x*=f;
}
template<typename _T>
void print(_T x){if(x<0){x=(~x)+1;putchar('-');}if(x>9)print(x/10);putchar(x%10+'0');}
int gcd(int a,int b){return !b?a:gcd(b,a%b);}
int add(int x,int y,int p){return x+y<p?x+y:x+y-p;}
void Add(int &x,int y,int p){x=add(x,y,p);}
int qkpow(int a,int s,int p){int t=1;while(s){if(s&1)t=1ll*t*a%p;a=1ll*a*a%p;s>>=1;}return t;}
int n,m,dp[2][MAXN][MAXN],ans;
signed main(){freopen("partition.in","r",stdin);freopen("partition.out","w",stdout);read(n);read(m);dp[0][1][1]=1;int now=0,las=1;for(int i=2;i<=n;i++){swap(now,las);for(int j=1;j<=min(i,m);j++)for(int k=1;k<=j;k++){if(k)Add(dp[now][j][k-1],1ll*k*dp[las][j][k]%mo,mo);Add(dp[now][j+1][k+1],dp[las][j][k],mo);Add(dp[now][j][k],1ll*k*dp[las][j][k]%mo,mo);if(k)Add(dp[now][j+1][k],dp[las][j][k],mo);}for(int j=1;j<=min(i,m);j++)for(int k=0;k<=j;k++)dp[las][j][k]=0;}printf("%d\n",dp[now][m][0]);return 0;
}

谢谢!!!

这篇关于[硫化铂]守序划分问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/816929

相关文章

MySQL 设置AUTO_INCREMENT 无效的问题解决

《MySQL设置AUTO_INCREMENT无效的问题解决》本文主要介绍了MySQL设置AUTO_INCREMENT无效的问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参... 目录快速设置mysql的auto_increment参数一、修改 AUTO_INCREMENT 的值。

关于跨域无效的问题及解决(java后端方案)

《关于跨域无效的问题及解决(java后端方案)》:本文主要介绍关于跨域无效的问题及解决(java后端方案),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录通用后端跨域方法1、@CrossOrigin 注解2、springboot2.0 实现WebMvcConfig

Go语言中泄漏缓冲区的问题解决

《Go语言中泄漏缓冲区的问题解决》缓冲区是一种常见的数据结构,常被用于在不同的并发单元之间传递数据,然而,若缓冲区使用不当,就可能引发泄漏缓冲区问题,本文就来介绍一下问题的解决,感兴趣的可以了解一下... 目录引言泄漏缓冲区的基本概念代码示例:泄漏缓冲区的产生项目场景:Web 服务器中的请求缓冲场景描述代码

Java死锁问题解决方案及示例详解

《Java死锁问题解决方案及示例详解》死锁是指两个或多个线程因争夺资源而相互等待,导致所有线程都无法继续执行的一种状态,本文给大家详细介绍了Java死锁问题解决方案详解及实践样例,需要的朋友可以参考下... 目录1、简述死锁的四个必要条件:2、死锁示例代码3、如何检测死锁?3.1 使用 jstack3.2

解决JSONField、JsonProperty不生效的问题

《解决JSONField、JsonProperty不生效的问题》:本文主要介绍解决JSONField、JsonProperty不生效的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录jsONField、JsonProperty不生效javascript问题排查总结JSONField

github打不开的问题分析及解决

《github打不开的问题分析及解决》:本文主要介绍github打不开的问题分析及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、找到github.com域名解析的ip地址二、找到github.global.ssl.fastly.net网址解析的ip地址三

MySQL版本问题导致项目无法启动问题的解决方案

《MySQL版本问题导致项目无法启动问题的解决方案》本文记录了一次因MySQL版本不一致导致项目启动失败的经历,详细解析了连接错误的原因,并提供了两种解决方案:调整连接字符串禁用SSL或统一MySQL... 目录本地项目启动报错报错原因:解决方案第一个:第二种:容器启动mysql的坑两种修改时区的方法:本地

springboot加载不到nacos配置中心的配置问题处理

《springboot加载不到nacos配置中心的配置问题处理》:本文主要介绍springboot加载不到nacos配置中心的配置问题处理,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录springboot加载不到nacos配置中心的配置两种可能Spring Boot 版本Nacos

Java中JSON格式反序列化为Map且保证存取顺序一致的问题

《Java中JSON格式反序列化为Map且保证存取顺序一致的问题》:本文主要介绍Java中JSON格式反序列化为Map且保证存取顺序一致的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未... 目录背景问题解决方法总结背景做项目涉及两个微服务之间传数据时,需要提供方将Map类型的数据序列化为co

如何解决Druid线程池Cause:java.sql.SQLRecoverableException:IO错误:Socket read timed out的问题

《如何解决Druid线程池Cause:java.sql.SQLRecoverableException:IO错误:Socketreadtimedout的问题》:本文主要介绍解决Druid线程... 目录异常信息触发场景找到版本发布更新的说明从版本更新信息可以看到该默认逻辑已经去除总结异常信息触发场景复