【跟着stackoverflow学Pandas】Renaming columns in pandas-列的重命名

2024-03-16 20:38

本文主要是介绍【跟着stackoverflow学Pandas】Renaming columns in pandas-列的重命名,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最近做一个系列博客,跟着stackoverflow学Pandas。

专栏地址:http://blog.csdn.net/column/details/16726.html

pandas作为关键词,在stackoverflow中进行搜索,随后安照 votes 数目进行排序:
https://stackoverflow.com/questions/tagged/pandas?sort=votes&pageSize=15

Renaming columns in pandas - 列的重命名

https://stackoverflow.com/questions/11346283/renaming-columns-in-pandas

方法1

>>> df = pd.DataFrame({'$a':[1,2], '$b': [10,20]})
>>> df.columns = ['a', 'b']
>>> df
#   a   b
#0  1  10
#1  2  20

上面的方法直接给columns属性赋值, 如果需要对单个列名进行修改,可以

col_names = df.columns.values
col_names[0] = 'new_name'
df.columns = col_names 

但是绝对不能 df.columns.values[0] = 'new_name', df.columns.values 是不允许修改的。

方法2

如果仅对特定的列进行重命名,我们可以采用rename函数,进行操作。

df = df.rename(columns={'oldName1': 'newName1', 'oldName2': 'newName2'})
# OR
new_df = df.rename(columns={'oldName1': 'newName1', 'oldName2': 'newName2'}, inplace=True)
# inplace = True 目的是修改原有Dataframe,不生成新的 DataFrame

参考
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.rename.html

# rename 可以修改 Series 的index值
>>> s = pd.Series([1, 2, 3])
>>> s
0    1
1    2
2    3
dtype: int64
>>> s.rename("my_name") # scalar, changes Series.name
0    1
1    2
2    3
Name: my_name, dtype: int64
>>> s.rename(lambda x: x ** 2)  # function, changes labels
0    1
1    2
4    3
dtype: int64
>>> s.rename({1: 3, 2: 5})  # mapping, changes labels
0    1
3    2
5    3
dtype: int64
>>> df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
>>> df.rename(2)
Traceback (most recent call last):
...
TypeError: 'int' object is not callable
>>> df.rename(index=str, columns={"A": "a", "B": "c"})a  c
0  1  4
1  2  5
2  3  6
>>> df.rename(index=str, columns={"A": "a", "C": "c"})a  B
0  1  4
1  2  5
2  3  6

这篇关于【跟着stackoverflow学Pandas】Renaming columns in pandas-列的重命名的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/816660

相关文章

Pandas进行周期与时间戳转换的方法

《Pandas进行周期与时间戳转换的方法》本教程将深入讲解如何在pandas中使用to_period()和to_timestamp()方法,完成时间戳与周期之间的转换,并结合实际应用场景展示这些方法的... 目录to_period() 时间戳转周期基本操作应用示例to_timestamp() 周期转时间戳基

pandas DataFrame keys的使用小结

《pandasDataFramekeys的使用小结》pandas.DataFrame.keys()方法返回DataFrame的列名,类似于字典的键,本文主要介绍了pandasDataFrameke... 目录Pandas2.2 DataFrameIndexing, iterationpandas.DataF

Pandas利用主表更新子表指定列小技巧

《Pandas利用主表更新子表指定列小技巧》本文主要介绍了Pandas利用主表更新子表指定列小技巧,通过创建主表和子表的DataFrame对象,并使用映射字典进行数据关联和更新,实现了从主表到子表的同... 目录一、前言二、基本案例1. 创建主表数据2. 创建映射字典3. 创建子表数据4. 更新子表的 zb

Pandas中统计汇总可视化函数plot()的使用

《Pandas中统计汇总可视化函数plot()的使用》Pandas提供了许多强大的数据处理和分析功能,其中plot()函数就是其可视化功能的一个重要组成部分,本文主要介绍了Pandas中统计汇总可视化... 目录一、plot()函数简介二、plot()函数的基本用法三、plot()函数的参数详解四、使用pl

Pandas透视表(Pivot Table)的具体使用

《Pandas透视表(PivotTable)的具体使用》透视表用于在数据分析和处理过程中进行数据重塑和汇总,本文就来介绍一下Pandas透视表(PivotTable)的具体使用,感兴趣的可以了解一下... 目录前言什么是透视表?使用步骤1. 引入必要的库2. 读取数据3. 创建透视表4. 查看透视表总结前言

pandas中位数填充空值的实现示例

《pandas中位数填充空值的实现示例》中位数填充是一种简单而有效的方法,用于填充数据集中缺失的值,本文就来介绍一下pandas中位数填充空值的实现,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是中位数填充?为什么选择中位数填充?示例数据结果分析完整代码总结在数据分析和机器学习过程中,处理缺失数

Pandas使用AdaBoost进行分类的实现

《Pandas使用AdaBoost进行分类的实现》Pandas和AdaBoost分类算法,可以高效地进行数据预处理和分类任务,本文主要介绍了Pandas使用AdaBoost进行分类的实现,具有一定的参... 目录什么是 AdaBoost?使用 AdaBoost 的步骤安装必要的库步骤一:数据准备步骤二:模型

Pandas统计每行数据中的空值的方法示例

《Pandas统计每行数据中的空值的方法示例》处理缺失数据(NaN值)是一个非常常见的问题,本文主要介绍了Pandas统计每行数据中的空值的方法示例,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是空值?为什么要统计空值?准备工作创建示例数据统计每行空值数量进一步分析www.chinasem.cn处

使用Pandas进行均值填充的实现

《使用Pandas进行均值填充的实现》缺失数据(NaN值)是一个常见的问题,我们可以通过多种方法来处理缺失数据,其中一种常用的方法是均值填充,本文主要介绍了使用Pandas进行均值填充的实现,感兴趣的... 目录什么是均值填充?为什么选择均值填充?均值填充的步骤实际代码示例总结在数据分析和处理过程中,缺失数

关于pandas的read_csv方法使用解读

《关于pandas的read_csv方法使用解读》:本文主要介绍关于pandas的read_csv方法使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录pandas的read_csv方法解读read_csv中的参数基本参数通用解析参数空值处理相关参数时间处理相关