简述 LLVM 与 Clang 及其关系 (c++ 编译 文章三)

2024-03-16 11:48

本文主要是介绍简述 LLVM 与 Clang 及其关系 (c++ 编译 文章三),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

可以简单理解为 clang 编译器的前端,负责解析源代码,检查语法错误,并将其翻译为抽象的语法树(或者简单理解为把代码翻译成中间代码),狭义的llvm是编译器的后端,负责优化中间代码和把中间代码转换为目标机器的代码。和java有点像,生成与系统无法的中间代码,之后在jvm上运行。

 

 

------------------------------------------------------------------------------------------------

随着 Android P 的逐步应用,越来越多的客户要求编译库时用 libc++ 来代替 libstdc++。libc++ 和 libstdc++ 这两个库有关系呢?它们两个都是 C++ 标准库,libc++ 是针对 Clang 编译器特别重写的 C++ 标准库,而 libstdc++ 则是 GCC 的对应 C++ 标准库了。从 Android 市场来说,Android NDK 已在具体应用中放弃了 GCC,全面转向 Clang,正如很早前 Android NDK 在 Changelog 中提到的那样:

Everyone should be switching to Clang. 
GCC in the NDK is now deprecated.

Android NDK 从 r11 开始建议大家切换到 Clang,并且把 GCC 标记为 deprecated,将 GCC 版本锁定在 GCC 4.9 不再更新; 
Android NDK 从 r13 起,默认使用 Clang 进行编译,但是暂时也没有把 GCC 删掉,Google 会一直等到 libc++ 足够稳定后再删掉 GCC; 
Android NDK 在 r17 中宣称不再支持 GCC 并在后续的 r18 中删掉 GCC,具体可见 NDK 的版本历史。

接下来,简要的介绍一下 Clang。Clang 是一个 C、C++、Objective-C 和 Objective-C++ 编程语言的编译器前端,采用底层虚拟机(LLVM)作为后端。至于为什么有了 GCC 还要开发 Clang?Clang 相比 GCC 又有什么优势呢?网上有很多信息可以参考,这里只简单提两点:(1)Clang 采用的是 BSD 协议的许可证,而 GCC 采用的是 GPL 协议,显然前者更为宽松;(2)Clang 是一个高度模块化开发的轻量级编译器,编译速度快、占用内存小、有着友好的出错提示。

然后说下 Clang 背后的 LLVM(Low Level Virtual Machine)。LLVM 是以 BSD 许可来开发的开源的编译器框架系统,基于 C++ 编写而成,利用虚拟技术来优化以任意程序语言编写的程序的编译时间、链接时间、运行时间以及空闲时间,最早以 C/C++ 为实现对象,对开发者保持开放,并兼容已有脚本。LLVM 计划启动于 2000 年,最初由 University of Illinois at Urbana-Champaign 的 Chris Lattner 主持开展,2006 年 Chris Lattner 加盟苹果公司并致力于 LLVM 在苹果公司开发体系中的应用,所以苹果公司也是 LLVM 计划的主要资助者。目前 LLVM 因其宽松的许可协议,更好的模块化、更清晰的架构,成为很多厂商或者组织的选择,已经被苹果 IOS 开发工具、Facebook、Google 等各大公司采用,像 Swift、Rust 等语言都选择了以 LLVM 为后端。

在理解 LLVM 之前,先说下传统编译器的工作原理,基本上都是三段式的,可以分为前端、优化器和后端。前端负责解析源代码,检查语法错误,并将其翻译为抽象的语法树;优化器对这一中间代码进行优化,试图使代码更高效;后端则负责将优化器优化后的中间代码转换为目标机器的代码,这一过程后端会最大化的利用目标机器的特殊指令,以提高代码的性能。基于这个认知,我们可以认为 LLVM 包括了两个概念:一个广义的 LLVM 和一个狭义的 LLVM 。广义的 LLVM 指的是一个完整的 LLVM 编译器框架系统,包括了前端、优化器、后端、众多的库函数以及很多的模块;而狭义的 LLVM 则是聚焦于编译器后端功能的一系列模块和库,包括代码优化、代码生成、JIT 等。

下面大概讲一讲 LLVM 和 Clang 的关系。我们将它们对应于传统的编译器当中的几个独立的部分,这样能够更加方便明确的表述出它们之前的关系。

 

对应到这个图中,可以非常明确的找出它们的关系。整体的编译器架构就是 LLVM 架构;Clang 大致可以对应到编译器的前端,主要处理一些和具体机器无关的针对语言的分析操作;编译器的优化器和后端部分就是之前提到的 LLVM 后端,即狭义的 LLVM。

此外,由于 LLVM 的命名最早源自于底层虚拟机(Low Level Virtual Machine) 的首字母缩写,但这个项目的范围并不局限于创建一个虚拟机,这个缩写导致了大量的疑惑。LLVM 成长之后已成为众多编译工具及低级工具技术的统称,使得这个名字变得更不贴切,所以开发者决定放弃这个缩写的涵义,现在 LLVM 已独立成为一个品牌,适用于 LLVM 下的所有项目,包括 LLVM 中介码、LLVM 除错工具、LLVM C++ 标准库等。
--------------------- 
作者:艾蔓草 
来源:CSDN 
原文:https://blog.csdn.net/xhhjin/article/details/81164076 
版权声明:本文为博主原创文章,转载请附上博文链接!

这篇关于简述 LLVM 与 Clang 及其关系 (c++ 编译 文章三)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/815405

相关文章

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

一篇文章彻底搞懂macOS如何决定java环境

《一篇文章彻底搞懂macOS如何决定java环境》MacOS作为一个功能强大的操作系统,为开发者提供了丰富的开发工具和框架,下面:本文主要介绍macOS如何决定java环境的相关资料,文中通过代码... 目录方法一:使用 which命令方法二:使用 Java_home工具(Apple 官方推荐)那问题来了,

C++读写word文档(.docx)DuckX库的使用详解

《C++读写word文档(.docx)DuckX库的使用详解》DuckX是C++库,用于创建/编辑.docx文件,支持读取文档、添加段落/片段、编辑表格,解决中文乱码需更改编码方案,进阶功能含文本替换... 目录一、基本用法1. 读取文档3. 添加段落4. 添加片段3. 编辑表格二、进阶用法1. 文本替换2

C++中处理文本数据char与string的终极对比指南

《C++中处理文本数据char与string的终极对比指南》在C++编程中char和string是两种用于处理字符数据的类型,但它们在使用方式和功能上有显著的不同,:本文主要介绍C++中处理文本数... 目录1. 基本定义与本质2. 内存管理3. 操作与功能4. 性能特点5. 使用场景6. 相互转换核心区别

Java 中的 equals 和 hashCode 方法关系与正确重写实践案例

《Java中的equals和hashCode方法关系与正确重写实践案例》在Java中,equals和hashCode方法是Object类的核心方法,广泛用于对象比较和哈希集合(如HashMa... 目录一、背景与需求分析1.1 equals 和 hashCode 的背景1.2 需求分析1.3 技术挑战1.4

C++右移运算符的一个小坑及解决

《C++右移运算符的一个小坑及解决》文章指出右移运算符处理负数时左侧补1导致死循环,与除法行为不同,强调需注意补码机制以正确统计二进制1的个数... 目录我遇到了这么一个www.chinasem.cn函数由此可以看到也很好理解总结我遇到了这么一个函数template<typename T>unsigned

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

深入解析C++ 中std::map内存管理

《深入解析C++中std::map内存管理》文章详解C++std::map内存管理,指出clear()仅删除元素可能不释放底层内存,建议用swap()与空map交换以彻底释放,针对指针类型需手动de... 目录1️、基本清空std::map2️、使用 swap 彻底释放内存3️、map 中存储指针类型的对象

C++ STL-string类底层实现过程

《C++STL-string类底层实现过程》本文实现了一个简易的string类,涵盖动态数组存储、深拷贝机制、迭代器支持、容量调整、字符串修改、运算符重载等功能,模拟标准string核心特性,重点强... 目录实现框架一、默认成员函数1.默认构造函数2.构造函数3.拷贝构造函数(重点)4.赋值运算符重载函数