6.4.4 反射器场景-OptionC1方案

2024-03-16 10:52

本文主要是介绍6.4.4 反射器场景-OptionC1方案,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

OptionC1方案——反射器场景

场景A-旁挂RR场景

一、配置思路

1、首先跟OptionC1一样,先解决PE之间路由学习需求:

  • 但网络中新增了RR反射器,所有流量都需要先经过RR反射器。
  • 故需要PE、ASBR与RR先建立IBGP邻居,然后ASBR之间建立EBGP发布各自RR环回口地址
  • 为啥发布的是RR的环回口?
    • 因为主要是通过RR之间建立MP-BGP来交互VPNv4路由,非RR场景下则是通过PE。

2、解决路由黑洞:

  • 网络中已经配置了MPLS+LDP协议,与OptionC1一样需要在ASBR上向对端ASBR手动分配标签。
  • ASBR只与RR建立了IBGP邻居,故ASBR只能向RR手动分配标签。(在非RR场景中是向PE分配标签)

3、解决VPNv4路由学习:

  • 非RR场景中PE之间建立MP-BGP,但在RR场景中就是RR之间互相建立MP-BGP
  • 以及PE与RR之间也要建立MP-BGP,才能够通过RR学习到对端PE的VPNv4路由。

4、总结大致操作

  • ASBR之间建立EBGP,发布各自RR环回口。
  • ASBR、PE与RR建立IBGP。
  • ASBR向RR以及对端ASBR分配标签。
  • PE与RR、RR与对端RR建立MP-BGP。

在这里插入图片描述

二、配置过程

  • 目前拓扑中已配置了:
    • IGP使用OSPF并发布各自设备的环回口地址。
    • PE、P、ASBR、RR之间配置了MPLS+LDP实现标签分配与同步。
    • CE与PE的VPN实例建立了EBGP邻居。
    • P设备不做BGP配置。
1、ASBR之间建立EBGP,发布各自RR环回口:
[ASBR1]bgp 100
[ASBR1-bgp]peer 10.1.12.2 as 200
[ASBR1-bgp]network 4.4.4.4 255.255.255.255 [ASBR2]bgp 200
[ASBR2-bgp]peer 10.1.12.1 as 100
[ASBR2-bgp]network 44.44.44.44 255.255.255.255 

查看EBGP邻居是否建立成功

[ASBR1-bgp]dis bgp peer BGP local router ID : 10.1.111.10Local AS number : 100Peer            V          AS  MsgRcvd  MsgSent  OutQ  Up/Down       State PrefRcv10.1.12.2       4         200        3        4     0 00:00:17 Established      1[ASBR2-bgp]dis bgp peer BGP local router ID : 10.1.211.10Local AS number : 200Peer            V          AS  MsgRcvd  MsgSent  OutQ  Up/Down       State PrefRcv10.1.12.1       4         100        3        3     0 00:00:40 Established      1
2、ASBR、PE与RR建立IBGP:

为了减少篇幅,只以AS100内设备配置为例:

  • ASBR1与RR1建立IBGP
[ASBR1]bgp 100
[ASBR1-bgp]peer 4.4.4.4 as 100
[ASBR1-bgp]peer 4.4.4.4 con loop 0
  • PE1与RR1建立IBGP
[PE1]bgp 100
[PE1-bgp]peer 4.4.4.4 as 100
[PE1-bgp]peer 4.4.4.4 con loop0
  • RR1与ASBR1、PE1建立IBGP并配置成反射器客户端
[RR1]bgp 100
[RR1-bgp]peer 1.1.1.1 as 100
[RR1-bgp]peer 1.1.1.1 con loop0
[RR1-bgp]peer 3.3.3.3 as 100
[RR1-bgp]peer 3.3.3.3 con loop0
[RR1-bgp]peer 1.1.1.1 reflect-client 
[RR1-bgp]peer 3.3.3.3 reflect-client 

检查AS100的配置结果,于RR上查看是否成功建立IBGP:

<RR1>dis bgp peerBGP local router ID : 10.1.111.13Local AS number : 100Peer            V          AS  MsgRcvd  MsgSent  OutQ  Up/Down       State PrefRcv1.1.1.1         4         100        2        3     0 00:00:11 Established       03.3.3.3         4         100        4        3     0 00:00:02 Established       2
<RR2>dis bgp peer BGP local router ID : 44.44.44.44Local AS number : 200Peer            V          AS  MsgRcvd  MsgSent  OutQ  Up/Down       State PrefRcv11.11.11.11     4         200        3        4     0 00:01:07 Established      033.33.33.33     4         200        5        4     0 00:01:07 Established      2
3、ASBR向RR以及对端ASBR分配标签:

为了减少篇幅,只以AS100内设备配置为例:

  • ASBR向对端ASBR直接分配标签
  • ASBR只向RR传递带标签的路由重新分配标签(相当于只对ASBR2传递来的RR环回口路由打上标签)
[ASBR1]route-policy change_mpls permit node 5 
[ASBR1-route-policy] if-match mpls-label 
[ASBR1-route-policy] apply mpls-label[ASBR1-route-policy]route-policy mpls permit node 5 
[ASBR1-route-policy] apply mpls-label[ASBR1]bgp 100
[ASBR1-bgp]peer 10.1.12.2 route-policy mpls export
[ASBR1-bgp]peer 10.1.12.2 label-route-capability
[ASBR1-bgp]peer 4.4.4.4 route-policy change_mpls export 
[ASBR1-bgp]peer 4.4.4.4 label-route-capability 
  • RR与PE设备上只需要使能发送标签路由能力即可
[RR1]bgp 100
[RR1-bgp]peer 1.1.1.1 label-route-capability
[RR1-bgp]peer 3.3.3.3 label-route-capability[RR1]bgp 100
[RR1-bgp]peer 4.4.4.4 label-route-capability

配置完成之后,在RR设备上检查是否收到对端RR的MPLS标签信息,以及是否能够正常访问:

<PE1>dis mpls lsp
-------------------------------------------------------------------------------LSP Information: BGP  LSP
-------------------------------------------------------------------------------
FEC                In/Out Label  In/Out IF                      Vrf Name       
44.44.44.44/32     NULL/1028     -/-     [PE1-bgp]ping -a 4.4.4.4 44.44.44.44PING 44.44.44.44: 56  data bytes, press CTRL_C to breakReply from 44.44.44.44: bytes=56 Sequence=1 ttl=251 time=100 msReply from 44.44.44.44: bytes=56 Sequence=2 ttl=251 time=40 msReply from 44.44.44.44: bytes=56 Sequence=3 ttl=251 time=40 msReply from 44.44.44.44: bytes=56 Sequence=4 ttl=251 time=60 ms
4、PE与RR、RR与对端RR建立MP-BGP:

为了减少篇幅,只以AS100内设备配置为例:

  • PE与RR建立MP-BGP
[PE1]bgp 100
[PE1-bgp]ipv4 vpnv4
[PE1-bgp-af-vpnv4] peer 4.4.4.4 enable
  • RR与对端RR建立MP-BGP,以及向PE建立MP-BGP。

undo policy vpn-target ,由于RR上并没有创建VPN实例,故需要关闭该过滤功能

[RR1]bgp 100
[RR1-bgp]peer 44.44.44.44 as 200
[RR1-bgp]peer 44.44.44.44 con lo 0
[RR1-bgp]peer 44.44.44.44 eb	
[RR1-bgp]peer 44.44.44.44 ebgp-max-hop 10[RR1-bgp]ipv4 vpnv4
[RR1-bgp-af-vpnv4]undo policy vpn-target 
[RR1-bgp-af-vpnv4]peer 44.44.44.44 enable
[RR1-bgp-af-vpnv4]peer 1.1.1.1 enable

于RR1上检查MP-BGP建立情况:

[RR1-bgp]display bgp vpnv4 all peer BGP local router ID : 10.1.111.13Local AS number : 100Peer            V          AS  MsgRcvd  MsgSent  OutQ  Up/Down       State PrefRcv1.1.1.1         4         100       19       21     0 00:15:56 Established      144.44.44.44     4         200        3        5     0 00:00:34 Established      0
5、完成所有配置

检查CE设备上是否学习到对端CE的测试路由,以及是否能够互通:

<CE1>display bgp routing-tableBGP Local router ID is 10.1.111.1 Network            NextHop        MED        LocPrf    PrefVal Path/Ogn*>   192.168.10.0       0.0.0.0         0                     0      i*>   192.168.20.0       10.1.111.2                            0      100 200 20i<CE1>ping -a 192.168.10.254 192.168.20.254PING 192.168.20.254: 56  data bytes, press CTRL_C to breakReply from 192.168.20.254: bytes=56 Sequence=1 ttl=245 time=270 msReply from 192.168.20.254: bytes=56 Sequence=2 ttl=245 time=100 msReply from 192.168.20.254: bytes=56 Sequence=3 ttl=245 time=80 ms

三、扩展

1、并于CE1与CE2之间互访时,数据包的变化情况简述:

  • CE1访问CE2的报文到达PE1的实例路由表,得知需要访问CE2,故封装上私网标签1028:
<PE1>dis bgp vpnv4 all routing-table label Network           NextHop           In/Out Label
*>i    192.168.20.0      4.4.4.4           NULL/1028
  • 同时PE1得知下一跳为4.4.4.4(RR1反射器),故查找FIB转发表:
<PE1>dis fib
Destination/Mask   Nexthop         Flag  TimeStamp     Interface      TunnelID
4.4.4.4/32         10.1.111.6      DGHU  t[381]        GE0/0/1        0x5
  • 从FIB表发现TunnelID非0x0,故查找标签转发表,得知需要封装上公网标签1026并从G0/0/1口发出。
<PE1>dis mpls lsp
FEC                In/Out Label  In/Out IF  
4.4.4.4/32         NULL/1026     -/GE0/0/1
  • 报文封装情况:【公网标签1026】【私网标签1028】【数据】
  • 报文达到P1,P1进行标签转发,将公网标签1026替换3成之后从G0/0/2口发出。
<P1>dis mpls lsp
FEC                In/Out Label  In/Out IF 
4.4.4.4/32         1026/3        -/GE0/0/2
  • 报文封装情况:【公网标签3(弹出)】【私网标签1028】【数据】

  • 报文达到RR1,查看路由表得知下一跳

<RR1>dis bgp vpnv4 all routing-table Network            NextHop        MED        LocPrf    PrefVal Path/Ogn*>   192.168.20.0       44.44.44.44                           0      200 20i
  • 查看FIB表要继续打上标签(中间层标签1030)
  • 报文封装情况:【中间层标签1030】【私网标签1028】【数据】
<RR1>dis fib
Destination/Mask   Nexthop         Flag  TimeStamp     Interface      TunnelID
44.44.44.44/32     10.1.111.14     DGHU  t[2173]       GE0/0/0        0x5<RR1>dis mpls lsp
-------------------------------------------------------------------------------LSP Information: BGP  LSP
-------------------------------------------------------------------------------
FEC                In/Out Label  In/Out IF                      Vrf Name 
44.44.44.44/32     NULL/1030     -/-   
  • 继续迭代查询,得知去往44.44.44.44的下一跳为3.3.3.3(ASBR1),即需要继续封装公网标签1024
  • 报文封装情况:【公网标签1024】【中间层标签1030】【私网标签1028】【数据】
<RR1>dis tunnel-info tunnel-id 0x5
Tunnel ID:                    0x5
Tunnel Token:                 5
Type:                         lsp
Destination:                  3.3.3.3<RR1>dis mpls lsp
-------------------------------------------------------------------------------LSP Information: LDP LSP
-------------------------------------------------------------------------------
FEC                In/Out Label  In/Out IF                      Vrf Name
3.3.3.3/32         NULL/1024     -/GE0/0/0
  • 后继部分的标签操作,亦是如此查找,替换。

在这里插入图片描述

这篇关于6.4.4 反射器场景-OptionC1方案的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/815249

相关文章

防止Linux rm命令误操作的多场景防护方案与实践

《防止Linuxrm命令误操作的多场景防护方案与实践》在Linux系统中,rm命令是删除文件和目录的高效工具,但一旦误操作,如执行rm-rf/或rm-rf/*,极易导致系统数据灾难,本文针对不同场景... 目录引言理解 rm 命令及误操作风险rm 命令基础常见误操作案例防护方案使用 rm编程 别名及安全删除

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

C#使用Spire.Doc for .NET实现HTML转Word的高效方案

《C#使用Spire.Docfor.NET实现HTML转Word的高效方案》在Web开发中,HTML内容的生成与处理是高频需求,然而,当用户需要将HTML页面或动态生成的HTML字符串转换为Wor... 目录引言一、html转Word的典型场景与挑战二、用 Spire.Doc 实现 HTML 转 Word1

使用Python实现Word文档的自动化对比方案

《使用Python实现Word文档的自动化对比方案》我们经常需要比较两个Word文档的版本差异,无论是合同修订、论文修改还是代码文档更新,人工比对不仅效率低下,还容易遗漏关键改动,下面通过一个实际案例... 目录引言一、使用python-docx库解析文档结构二、使用difflib进行差异比对三、高级对比方

Spring Security 前后端分离场景下的会话并发管理

《SpringSecurity前后端分离场景下的会话并发管理》本文介绍了在前后端分离架构下实现SpringSecurity会话并发管理的问题,传统Web开发中只需简单配置sessionManage... 目录背景分析传统 web 开发中的 sessionManagement 入口ConcurrentSess

Python多线程应用中的卡死问题优化方案指南

《Python多线程应用中的卡死问题优化方案指南》在利用Python语言开发某查询软件时,遇到了点击搜索按钮后软件卡死的问题,本文将简单分析一下出现的原因以及对应的优化方案,希望对大家有所帮助... 目录问题描述优化方案1. 网络请求优化2. 多线程架构优化3. 全局异常处理4. 配置管理优化优化效果1.

99%的人都选错了! 路由器WiFi双频合一还是分开好的专业解析与适用场景探讨

《99%的人都选错了!路由器WiFi双频合一还是分开好的专业解析与适用场景探讨》关于双频路由器的“双频合一”与“分开使用”两种模式,用户往往存在诸多疑问,本文将从多个维度深入探讨这两种模式的优缺点,... 在如今“没有WiFi就等于与世隔绝”的时代,越来越多家庭、办公室都开始配置双频无线路由器。但你有没有注

MySQL容灾备份的实现方案

《MySQL容灾备份的实现方案》进行MySQL的容灾备份是确保数据安全和业务连续性的关键步骤,容灾备份可以分为本地备份和远程备份,主要包括逻辑备份和物理备份两种方式,下面就来具体介绍一下... 目录一、逻辑备份1. 使用mysqldump进行逻辑备份1.1 全库备份1.2 单库备份1.3 单表备份2. 恢复

深入解析Java NIO在高并发场景下的性能优化实践指南

《深入解析JavaNIO在高并发场景下的性能优化实践指南》随着互联网业务不断演进,对高并发、低延时网络服务的需求日益增长,本文将深入解析JavaNIO在高并发场景下的性能优化方法,希望对大家有所帮助... 目录简介一、技术背景与应用场景二、核心原理深入分析2.1 Selector多路复用2.2 Buffer

redis中session会话共享的三种方案

《redis中session会话共享的三种方案》本文探讨了分布式系统中Session共享的三种解决方案,包括粘性会话、Session复制以及基于Redis的集中存储,具有一定的参考价值,感兴趣的可以了... 目录三种解决方案粘性会话(Sticky Sessions)Session复制Redis统一存储Spr