6.4.4 反射器场景-OptionC1方案

2024-03-16 10:52

本文主要是介绍6.4.4 反射器场景-OptionC1方案,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

OptionC1方案——反射器场景

场景A-旁挂RR场景

一、配置思路

1、首先跟OptionC1一样,先解决PE之间路由学习需求:

  • 但网络中新增了RR反射器,所有流量都需要先经过RR反射器。
  • 故需要PE、ASBR与RR先建立IBGP邻居,然后ASBR之间建立EBGP发布各自RR环回口地址
  • 为啥发布的是RR的环回口?
    • 因为主要是通过RR之间建立MP-BGP来交互VPNv4路由,非RR场景下则是通过PE。

2、解决路由黑洞:

  • 网络中已经配置了MPLS+LDP协议,与OptionC1一样需要在ASBR上向对端ASBR手动分配标签。
  • ASBR只与RR建立了IBGP邻居,故ASBR只能向RR手动分配标签。(在非RR场景中是向PE分配标签)

3、解决VPNv4路由学习:

  • 非RR场景中PE之间建立MP-BGP,但在RR场景中就是RR之间互相建立MP-BGP
  • 以及PE与RR之间也要建立MP-BGP,才能够通过RR学习到对端PE的VPNv4路由。

4、总结大致操作

  • ASBR之间建立EBGP,发布各自RR环回口。
  • ASBR、PE与RR建立IBGP。
  • ASBR向RR以及对端ASBR分配标签。
  • PE与RR、RR与对端RR建立MP-BGP。

在这里插入图片描述

二、配置过程

  • 目前拓扑中已配置了:
    • IGP使用OSPF并发布各自设备的环回口地址。
    • PE、P、ASBR、RR之间配置了MPLS+LDP实现标签分配与同步。
    • CE与PE的VPN实例建立了EBGP邻居。
    • P设备不做BGP配置。
1、ASBR之间建立EBGP,发布各自RR环回口:
[ASBR1]bgp 100
[ASBR1-bgp]peer 10.1.12.2 as 200
[ASBR1-bgp]network 4.4.4.4 255.255.255.255 [ASBR2]bgp 200
[ASBR2-bgp]peer 10.1.12.1 as 100
[ASBR2-bgp]network 44.44.44.44 255.255.255.255 

查看EBGP邻居是否建立成功

[ASBR1-bgp]dis bgp peer BGP local router ID : 10.1.111.10Local AS number : 100Peer            V          AS  MsgRcvd  MsgSent  OutQ  Up/Down       State PrefRcv10.1.12.2       4         200        3        4     0 00:00:17 Established      1[ASBR2-bgp]dis bgp peer BGP local router ID : 10.1.211.10Local AS number : 200Peer            V          AS  MsgRcvd  MsgSent  OutQ  Up/Down       State PrefRcv10.1.12.1       4         100        3        3     0 00:00:40 Established      1
2、ASBR、PE与RR建立IBGP:

为了减少篇幅,只以AS100内设备配置为例:

  • ASBR1与RR1建立IBGP
[ASBR1]bgp 100
[ASBR1-bgp]peer 4.4.4.4 as 100
[ASBR1-bgp]peer 4.4.4.4 con loop 0
  • PE1与RR1建立IBGP
[PE1]bgp 100
[PE1-bgp]peer 4.4.4.4 as 100
[PE1-bgp]peer 4.4.4.4 con loop0
  • RR1与ASBR1、PE1建立IBGP并配置成反射器客户端
[RR1]bgp 100
[RR1-bgp]peer 1.1.1.1 as 100
[RR1-bgp]peer 1.1.1.1 con loop0
[RR1-bgp]peer 3.3.3.3 as 100
[RR1-bgp]peer 3.3.3.3 con loop0
[RR1-bgp]peer 1.1.1.1 reflect-client 
[RR1-bgp]peer 3.3.3.3 reflect-client 

检查AS100的配置结果,于RR上查看是否成功建立IBGP:

<RR1>dis bgp peerBGP local router ID : 10.1.111.13Local AS number : 100Peer            V          AS  MsgRcvd  MsgSent  OutQ  Up/Down       State PrefRcv1.1.1.1         4         100        2        3     0 00:00:11 Established       03.3.3.3         4         100        4        3     0 00:00:02 Established       2
<RR2>dis bgp peer BGP local router ID : 44.44.44.44Local AS number : 200Peer            V          AS  MsgRcvd  MsgSent  OutQ  Up/Down       State PrefRcv11.11.11.11     4         200        3        4     0 00:01:07 Established      033.33.33.33     4         200        5        4     0 00:01:07 Established      2
3、ASBR向RR以及对端ASBR分配标签:

为了减少篇幅,只以AS100内设备配置为例:

  • ASBR向对端ASBR直接分配标签
  • ASBR只向RR传递带标签的路由重新分配标签(相当于只对ASBR2传递来的RR环回口路由打上标签)
[ASBR1]route-policy change_mpls permit node 5 
[ASBR1-route-policy] if-match mpls-label 
[ASBR1-route-policy] apply mpls-label[ASBR1-route-policy]route-policy mpls permit node 5 
[ASBR1-route-policy] apply mpls-label[ASBR1]bgp 100
[ASBR1-bgp]peer 10.1.12.2 route-policy mpls export
[ASBR1-bgp]peer 10.1.12.2 label-route-capability
[ASBR1-bgp]peer 4.4.4.4 route-policy change_mpls export 
[ASBR1-bgp]peer 4.4.4.4 label-route-capability 
  • RR与PE设备上只需要使能发送标签路由能力即可
[RR1]bgp 100
[RR1-bgp]peer 1.1.1.1 label-route-capability
[RR1-bgp]peer 3.3.3.3 label-route-capability[RR1]bgp 100
[RR1-bgp]peer 4.4.4.4 label-route-capability

配置完成之后,在RR设备上检查是否收到对端RR的MPLS标签信息,以及是否能够正常访问:

<PE1>dis mpls lsp
-------------------------------------------------------------------------------LSP Information: BGP  LSP
-------------------------------------------------------------------------------
FEC                In/Out Label  In/Out IF                      Vrf Name       
44.44.44.44/32     NULL/1028     -/-     [PE1-bgp]ping -a 4.4.4.4 44.44.44.44PING 44.44.44.44: 56  data bytes, press CTRL_C to breakReply from 44.44.44.44: bytes=56 Sequence=1 ttl=251 time=100 msReply from 44.44.44.44: bytes=56 Sequence=2 ttl=251 time=40 msReply from 44.44.44.44: bytes=56 Sequence=3 ttl=251 time=40 msReply from 44.44.44.44: bytes=56 Sequence=4 ttl=251 time=60 ms
4、PE与RR、RR与对端RR建立MP-BGP:

为了减少篇幅,只以AS100内设备配置为例:

  • PE与RR建立MP-BGP
[PE1]bgp 100
[PE1-bgp]ipv4 vpnv4
[PE1-bgp-af-vpnv4] peer 4.4.4.4 enable
  • RR与对端RR建立MP-BGP,以及向PE建立MP-BGP。

undo policy vpn-target ,由于RR上并没有创建VPN实例,故需要关闭该过滤功能

[RR1]bgp 100
[RR1-bgp]peer 44.44.44.44 as 200
[RR1-bgp]peer 44.44.44.44 con lo 0
[RR1-bgp]peer 44.44.44.44 eb	
[RR1-bgp]peer 44.44.44.44 ebgp-max-hop 10[RR1-bgp]ipv4 vpnv4
[RR1-bgp-af-vpnv4]undo policy vpn-target 
[RR1-bgp-af-vpnv4]peer 44.44.44.44 enable
[RR1-bgp-af-vpnv4]peer 1.1.1.1 enable

于RR1上检查MP-BGP建立情况:

[RR1-bgp]display bgp vpnv4 all peer BGP local router ID : 10.1.111.13Local AS number : 100Peer            V          AS  MsgRcvd  MsgSent  OutQ  Up/Down       State PrefRcv1.1.1.1         4         100       19       21     0 00:15:56 Established      144.44.44.44     4         200        3        5     0 00:00:34 Established      0
5、完成所有配置

检查CE设备上是否学习到对端CE的测试路由,以及是否能够互通:

<CE1>display bgp routing-tableBGP Local router ID is 10.1.111.1 Network            NextHop        MED        LocPrf    PrefVal Path/Ogn*>   192.168.10.0       0.0.0.0         0                     0      i*>   192.168.20.0       10.1.111.2                            0      100 200 20i<CE1>ping -a 192.168.10.254 192.168.20.254PING 192.168.20.254: 56  data bytes, press CTRL_C to breakReply from 192.168.20.254: bytes=56 Sequence=1 ttl=245 time=270 msReply from 192.168.20.254: bytes=56 Sequence=2 ttl=245 time=100 msReply from 192.168.20.254: bytes=56 Sequence=3 ttl=245 time=80 ms

三、扩展

1、并于CE1与CE2之间互访时,数据包的变化情况简述:

  • CE1访问CE2的报文到达PE1的实例路由表,得知需要访问CE2,故封装上私网标签1028:
<PE1>dis bgp vpnv4 all routing-table label Network           NextHop           In/Out Label
*>i    192.168.20.0      4.4.4.4           NULL/1028
  • 同时PE1得知下一跳为4.4.4.4(RR1反射器),故查找FIB转发表:
<PE1>dis fib
Destination/Mask   Nexthop         Flag  TimeStamp     Interface      TunnelID
4.4.4.4/32         10.1.111.6      DGHU  t[381]        GE0/0/1        0x5
  • 从FIB表发现TunnelID非0x0,故查找标签转发表,得知需要封装上公网标签1026并从G0/0/1口发出。
<PE1>dis mpls lsp
FEC                In/Out Label  In/Out IF  
4.4.4.4/32         NULL/1026     -/GE0/0/1
  • 报文封装情况:【公网标签1026】【私网标签1028】【数据】
  • 报文达到P1,P1进行标签转发,将公网标签1026替换3成之后从G0/0/2口发出。
<P1>dis mpls lsp
FEC                In/Out Label  In/Out IF 
4.4.4.4/32         1026/3        -/GE0/0/2
  • 报文封装情况:【公网标签3(弹出)】【私网标签1028】【数据】

  • 报文达到RR1,查看路由表得知下一跳

<RR1>dis bgp vpnv4 all routing-table Network            NextHop        MED        LocPrf    PrefVal Path/Ogn*>   192.168.20.0       44.44.44.44                           0      200 20i
  • 查看FIB表要继续打上标签(中间层标签1030)
  • 报文封装情况:【中间层标签1030】【私网标签1028】【数据】
<RR1>dis fib
Destination/Mask   Nexthop         Flag  TimeStamp     Interface      TunnelID
44.44.44.44/32     10.1.111.14     DGHU  t[2173]       GE0/0/0        0x5<RR1>dis mpls lsp
-------------------------------------------------------------------------------LSP Information: BGP  LSP
-------------------------------------------------------------------------------
FEC                In/Out Label  In/Out IF                      Vrf Name 
44.44.44.44/32     NULL/1030     -/-   
  • 继续迭代查询,得知去往44.44.44.44的下一跳为3.3.3.3(ASBR1),即需要继续封装公网标签1024
  • 报文封装情况:【公网标签1024】【中间层标签1030】【私网标签1028】【数据】
<RR1>dis tunnel-info tunnel-id 0x5
Tunnel ID:                    0x5
Tunnel Token:                 5
Type:                         lsp
Destination:                  3.3.3.3<RR1>dis mpls lsp
-------------------------------------------------------------------------------LSP Information: LDP LSP
-------------------------------------------------------------------------------
FEC                In/Out Label  In/Out IF                      Vrf Name
3.3.3.3/32         NULL/1024     -/GE0/0/0
  • 后继部分的标签操作,亦是如此查找,替换。

在这里插入图片描述

这篇关于6.4.4 反射器场景-OptionC1方案的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/815249

相关文章

Android kotlin中 Channel 和 Flow 的区别和选择使用场景分析

《Androidkotlin中Channel和Flow的区别和选择使用场景分析》Kotlin协程中,Flow是冷数据流,按需触发,适合响应式数据处理;Channel是热数据流,持续发送,支持... 目录一、基本概念界定FlowChannel二、核心特性对比数据生产触发条件生产与消费的关系背压处理机制生命周期

Knife4j+Axios+Redis前后端分离架构下的 API 管理与会话方案(最新推荐)

《Knife4j+Axios+Redis前后端分离架构下的API管理与会话方案(最新推荐)》本文主要介绍了Swagger与Knife4j的配置要点、前后端对接方法以及分布式Session实现原理,... 目录一、Swagger 与 Knife4j 的深度理解及配置要点Knife4j 配置关键要点1.Spri

MyBatis-Plus 中 nested() 与 and() 方法详解(最佳实践场景)

《MyBatis-Plus中nested()与and()方法详解(最佳实践场景)》在MyBatis-Plus的条件构造器中,nested()和and()都是用于构建复杂查询条件的关键方法,但... 目录MyBATis-Plus 中nested()与and()方法详解一、核心区别对比二、方法详解1.and()

ModelMapper基本使用和常见场景示例详解

《ModelMapper基本使用和常见场景示例详解》ModelMapper是Java对象映射库,支持自动映射、自定义规则、集合转换及高级配置(如匹配策略、转换器),可集成SpringBoot,减少样板... 目录1. 添加依赖2. 基本用法示例:简单对象映射3. 自定义映射规则4. 集合映射5. 高级配置匹

SQLite3 在嵌入式C环境中存储音频/视频文件的最优方案

《SQLite3在嵌入式C环境中存储音频/视频文件的最优方案》本文探讨了SQLite3在嵌入式C环境中存储音视频文件的优化方案,推荐采用文件路径存储结合元数据管理,兼顾效率与资源限制,小文件可使用B... 目录SQLite3 在嵌入式C环境中存储音频/视频文件的专业方案一、存储策略选择1. 直接存储 vs

python中Hash使用场景分析

《python中Hash使用场景分析》Python的hash()函数用于获取对象哈希值,常用于字典和集合,不可变类型可哈希,可变类型不可,常见算法包括除法、乘法、平方取中和随机数哈希,各有优缺点,需根... 目录python中的 Hash除法哈希算法乘法哈希算法平方取中法随机数哈希算法小结在Python中,

SpringBoot服务获取Pod当前IP的两种方案

《SpringBoot服务获取Pod当前IP的两种方案》在Kubernetes集群中,SpringBoot服务获取Pod当前IP的方案主要有两种,通过环境变量注入或通过Java代码动态获取网络接口IP... 目录方案一:通过 Kubernetes Downward API 注入环境变量原理步骤方案二:通过

Springboot3+将ID转为JSON字符串的详细配置方案

《Springboot3+将ID转为JSON字符串的详细配置方案》:本文主要介绍纯后端实现Long/BigIntegerID转为JSON字符串的详细配置方案,s基于SpringBoot3+和Spr... 目录1. 添加依赖2. 全局 Jackson 配置3. 精准控制(可选)4. OpenAPI (Spri

Python主动抛出异常的各种用法和场景分析

《Python主动抛出异常的各种用法和场景分析》在Python中,我们不仅可以捕获和处理异常,还可以主动抛出异常,也就是以类的方式自定义错误的类型和提示信息,这在编程中非常有用,下面我将详细解释主动抛... 目录一、为什么要主动抛出异常?二、基本语法:raise关键字基本示例三、raise的多种用法1. 抛

关于跨域无效的问题及解决(java后端方案)

《关于跨域无效的问题及解决(java后端方案)》:本文主要介绍关于跨域无效的问题及解决(java后端方案),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录通用后端跨域方法1、@CrossOrigin 注解2、springboot2.0 实现WebMvcConfig