pytorch之诗词生成6--eval

2024-03-16 10:28
文章标签 生成 pytorch 诗词 eval

本文主要是介绍pytorch之诗词生成6--eval,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

先上代码:


import tensorflow as tf
from dataset import tokenizer
import settings
import utils# 加载训练好的模型
model = tf.keras.models.load_model(r"E:\best_model.h5")
# 随机生成一首诗
print(utils.generate_random_poetry(tokenizer, model))
# 给出部分信息的情况下,随机生成剩余部分
print(utils.generate_random_poetry(tokenizer, model, s='深山夕照深秋雨'))
# 生成藏头诗
print(utils.generate_acrostic(tokenizer, model, head='深山夕照深秋雨'))

我们需要做的工作已经做完了,模型也已经训练好了,剩下的就是我们把我们的模型放到实际应用之中去了。

先看:

model = tf.keras.models.load_model(r"E:\best_model.h5")

这段代码使用了tensorflow中的tf.keras.models.load_model函数,加载一个预训练好的模型,这种加载预训练模型的例子很常见,在我们之前提到的风格迁移项目中,我们就加载预训练模型对我们的图片特征进行提取。

  •  tf.keras.models是tensorflow中用于构建和训练神经网络模型的模块。
  • load_model是tf.keras.models模块中的一个函数,用于从磁盘中加载保存好的预训练模型。我们的参数是一个模型文件或文件名,使用r前缀表示字符串是一个原始字符串,可以包含反斜杠\而无需进行转义。

这段代码的作用是将预训练模型加载到变量model中,以便后续使用该模型进行古诗生成或其他任务,加载的模型可以是之前使用的TensorFlow训练得到的模型,也可以是由其他方法训练得到的模型,加载模型之后,可以使用model变量调用模型的方法和属性。(其余方法如我们在图像识别项目中使用的save_model方法,使用save_model.save函数来保存模型参数,使用save_model.load函数来加载模型参数)。

接下来就是进行古诗的生成了:

print(utils.generate_random_poetry(tokenizer, model))

只是传递分词器和我们的模型表示只进行随机的诗词生成。

print(utils.generate_random_poetry(tokenizer, model, s='深山夕照深秋雨'))

除上述传递的参数之外,额外传递s表示传递第一句,会跟着第一句往后进行诗词的生成,在这里,由于我们使用的是循环神经网络(RNN) ,所以我们后面生成的诗词与我们提供的第一句是有很强的关联性的。

print(utils.generate_acrostic(tokenizer, model, head='深山夕照深秋雨'))

最后我们传递的参数改成藏头诗,我们传递的head将被分成一个个词,并对每个词进行相应的生成,然后将得到的结果组合在一起,形成完整的诗词,当然,我们对每个词进行生成的时候不止简单的考虑到我们head所提供的第一个词,而是考虑到前面已经生成的词。这样使全文就有一定的关联性。

最后我们来演示我们的模型效果:

我们给定的第一句是“深山夕照深秋雨”,包括藏头也是“深山夕照深秋雨”。

总体来看效果还是不错的,我们继续生成一首:

有些同学可能会发愁找不到相关的诗词资源,在这里我已经将相关资源传上去了。分别是进行诗词训练的数据集,便于同学们更加直观的感受训练过程,理解数据对深度学习的重要作用,还有预训练权重,可以直接用于模型。

至于训练数据,请查看我的文章http://t.csdnimg.cn/mF4lm。

这篇关于pytorch之诗词生成6--eval的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/815174

相关文章

Python实现自动化Word文档样式复制与内容生成

《Python实现自动化Word文档样式复制与内容生成》在办公自动化领域,高效处理Word文档的样式和内容复制是一个常见需求,本文将展示如何利用Python的python-docx库实现... 目录一、为什么需要自动化 Word 文档处理二、核心功能实现:样式与表格的深度复制1. 表格复制(含样式与内容)2

python如何生成指定文件大小

《python如何生成指定文件大小》:本文主要介绍python如何生成指定文件大小的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录python生成指定文件大小方法一(速度最快)方法二(中等速度)方法三(生成可读文本文件–较慢)方法四(使用内存映射高效生成

Pytorch介绍与安装过程

《Pytorch介绍与安装过程》PyTorch因其直观的设计、卓越的灵活性以及强大的动态计算图功能,迅速在学术界和工业界获得了广泛认可,成为当前深度学习研究和开发的主流工具之一,本文给大家介绍Pyto... 目录1、Pytorch介绍1.1、核心理念1.2、核心组件与功能1.3、适用场景与优势总结1.4、优

conda安装GPU版pytorch默认却是cpu版本

《conda安装GPU版pytorch默认却是cpu版本》本文主要介绍了遇到Conda安装PyTorchGPU版本却默认安装CPU的问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的... 目录一、问题描述二、网上解决方案罗列【此节为反面方案罗列!!!】三、发现的根本原因[独家]3.1 p

Maven项目中集成数据库文档生成工具的操作步骤

《Maven项目中集成数据库文档生成工具的操作步骤》在Maven项目中,可以通过集成数据库文档生成工具来自动生成数据库文档,本文为大家整理了使用screw-maven-plugin(推荐)的完... 目录1. 添加插件配置到 pom.XML2. 配置数据库信息3. 执行生成命令4. 高级配置选项5. 注意事

MybatisX快速生成增删改查的方法示例

《MybatisX快速生成增删改查的方法示例》MybatisX是基于IDEA的MyBatis/MyBatis-Plus开发插件,本文主要介绍了MybatisX快速生成增删改查的方法示例,文中通过示例代... 目录1 安装2 基本功能2.1 XML跳转2.2 代码生成2.2.1 生成.xml中的sql语句头2

PyTorch中cdist和sum函数使用示例详解

《PyTorch中cdist和sum函数使用示例详解》torch.cdist是PyTorch中用于计算**两个张量之间的成对距离(pairwisedistance)**的函数,常用于点云处理、图神经网... 目录基本语法输出示例1. 简单的 2D 欧几里得距离2. 批量形式(3D Tensor)3. 使用不

PyTorch高级特性与性能优化方式

《PyTorch高级特性与性能优化方式》:本文主要介绍PyTorch高级特性与性能优化方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、自动化机制1.自动微分机制2.动态计算图二、性能优化1.内存管理2.GPU加速3.多GPU训练三、分布式训练1.分布式数据

使用Python自动化生成PPT并结合LLM生成内容的代码解析

《使用Python自动化生成PPT并结合LLM生成内容的代码解析》PowerPoint是常用的文档工具,但手动设计和排版耗时耗力,本文将展示如何通过Python自动化提取PPT样式并生成新PPT,同时... 目录核心代码解析1. 提取 PPT 样式到 jsON关键步骤:代码片段:2. 应用 JSON 样式到

SpringBoot实现二维码生成的详细步骤与完整代码

《SpringBoot实现二维码生成的详细步骤与完整代码》如今,二维码的应用场景非常广泛,从支付到信息分享,二维码都扮演着重要角色,SpringBoot是一个非常流行的Java基于Spring框架的微... 目录一、环境搭建二、创建 Spring Boot 项目三、引入二维码生成依赖四、编写二维码生成代码五