免费阅读篇 | 芒果YOLOv8改进109:注意力机制SimAM:用于卷积神经网络的简单、无参数注意力模块

本文主要是介绍免费阅读篇 | 芒果YOLOv8改进109:注意力机制SimAM:用于卷积神经网络的简单、无参数注意力模块,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

免费阅读篇|芒果YOLOv8改进109:注意力机制篇SimAM:用于卷积神经网络的简单、无参数注意力模块

💡🚀🚀🚀本博客 改进源代码改进 适用于 YOLOv8 按步骤操作运行改进后的代码即可

该专栏完整目录链接: 芒果YOLOv8深度改进教程

该篇博客为免费阅读内容,直接改进即可🚀🚀🚀

文章目录

      • 1. SimAM论文
      • 2. YOLOv8 核心代码改进部分
      • 2.1 核心新增代码
        • 2.2 修改部分
      • 2.3 YOLOv8-simam网络配置文件
      • 2.4 运行代码
      • 改进说明


1. SimAM论文

在这里插入图片描述

在本文中,我们提出了一个概念简单但非常有效的卷积神经网络(ConvNets)注意力模块。与现有的通道和空间注意力模块相比,我们的模块在不向原始网络添加参数的情况下推断图层中特征图的 3D 注意力权重。具体来说,我们基于一些著名的神经科学理论,并提出优化能量函数以找到每个神经元的重要性。我们进一步推导了能量函数的快速闭式解,并证明该解可以在不到十行代码中实现。该模块的另一个优点是,大多数算子都是根据定义的能量函数的解来选择的,避免了过多的结构调整工作。对各种可视化任务的定量评估表明,所提模块在提高许多ConvNets的表示能力方面具有灵活性和有效性。

在这里插入图片描述

具体细节可以去看原论文:http://proceedings.mlr.press/v139/yang21o.html


2. YOLOv8 核心代码改进部分

2.1 核心新增代码

首先在ultralytics/nn/modules文件夹下,创建一个 simam.py文件,新增以下代码

import torch
import torch.nn as nnclass SimAM(torch.nn.Module):def __init__(self, channels = None,out_channels = None, e_lambda = 1e-4):super(SimAM, self).__init__()self.activaton = nn.Sigmoid()self.e_lambda = e_lambdadef __repr__(self):s = self.__class__.__name__ + '('s += ('lambda=%f)' % self.e_lambda)return s@staticmethoddef get_module_name():return "simam"def forward(self, x):b, c, h, w = x.size()n = w * h - 1x_minus_mu_square = (x - x.mean(dim=[2,3], keepdim=True)).pow(2)y = x_minus_mu_square / (4 * (x_minus_mu_square.sum(dim=[2,3], keepdim=True) / n + self.e_lambda)) + 0.5return x * self.activaton(y)   
2.2 修改部分

在ultralytics/nn/modules/init.py中导入 定义在 simam.py 里面的模块

from .simam import SimAM'SimAM' 加到 __all__ = [...] 里面

第一步:
ultralytics/nn/tasks.py文件中,新增

from ultralytics.nn.modules import SimAM

然后在 在tasks.py中配置
找到

        elif m is nn.BatchNorm2d:args = [ch[f]]

在这句上面加一个

        elif m is SimAM:c1, c2 = ch[f], args[0]if c2 != nc:  # if c2 not equal to number of classes (i.e. for Classify() output)c2 = make_divisible(min(c2, max_channels) * width, 8)args = [c1, c2, *args[1:]]

2.3 YOLOv8-simam网络配置文件

新增YOLOv8-simam.yaml

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'# [depth, width, max_channels]n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPss: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPsm: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPsl: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPsx: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs# YOLOv8.0n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2- [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4- [-1, 3, C2f, [128, True]]- [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8- [-1, 6, C2f, [256, True]]- [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16- [-1, 6, C2f, [512, True]]- [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32- [-1, 3, C2f, [1024, True]]- [-1, 3, SimAM, [1024]]- [-1, 1, SPPF, [1024, 5]]  # 9# YOLOv8.0n head
head:- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 6], 1, Concat, [1]]  # cat backbone P4- [-1, 3, C2f, [512]]  # 12- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 4], 1, Concat, [1]]  # cat backbone P3- [-1, 3, C2f, [256]]  # 15 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]]- [[-1, 13], 1, Concat, [1]]  # cat head P4- [-1, 3, C2f, [512]]  # 18 (P4/16-medium)- [-1, 1, Conv, [512, 3, 2]]- [[-1, 10], 1, Concat, [1]]  # cat head P5- [-1, 3, C2f, [1024]]  # 21 (P5/32-large)- [[16, 19, 22], 1, Detect, [nc]]  # Detect(P3, P4, P5)

2.4 运行代码

直接替换YOLOv8-simam.yaml 进行训练即可

到这里就完成了这篇的改进。

改进说明

这里改进是放在了主干后面,如果想放在改进其他地方,也是可以的。直接新增,然后调整通道,配齐即可,如果有不懂的,可以添加博主联系方式,如下


🥇🥇🥇
添加博主联系方式:

友好的读者可以添加博主QQ: 2434798737, 有空可以回答一些答疑和问题

🚀🚀🚀


参考

https://github.com/ultralytics/ultralytics

这篇关于免费阅读篇 | 芒果YOLOv8改进109:注意力机制SimAM:用于卷积神经网络的简单、无参数注意力模块的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/814487

相关文章

一文深入详解Python的secrets模块

《一文深入详解Python的secrets模块》在构建涉及用户身份认证、权限管理、加密通信等系统时,开发者最不能忽视的一个问题就是“安全性”,Python在3.6版本中引入了专门面向安全用途的secr... 目录引言一、背景与动机:为什么需要 secrets 模块?二、secrets 模块的核心功能1. 基

PostgreSQL中MVCC 机制的实现

《PostgreSQL中MVCC机制的实现》本文主要介绍了PostgreSQL中MVCC机制的实现,通过多版本数据存储、快照隔离和事务ID管理实现高并发读写,具有一定的参考价值,感兴趣的可以了解一下... 目录一 MVCC 基本原理python1.1 MVCC 核心概念1.2 与传统锁机制对比二 Postg

Maven 配置中的 <mirror>绕过 HTTP 阻断机制的方法

《Maven配置中的<mirror>绕过HTTP阻断机制的方法》:本文主要介绍Maven配置中的<mirror>绕过HTTP阻断机制的方法,本文给大家分享问题原因及解决方案,感兴趣的朋友一... 目录一、问题场景:升级 Maven 后构建失败二、解决方案:通过 <mirror> 配置覆盖默认行为1. 配置示

Redis过期删除机制与内存淘汰策略的解析指南

《Redis过期删除机制与内存淘汰策略的解析指南》在使用Redis构建缓存系统时,很多开发者只设置了EXPIRE但却忽略了背后Redis的过期删除机制与内存淘汰策略,下面小编就来和大家详细介绍一下... 目录1、简述2、Redis http://www.chinasem.cn的过期删除策略(Key Expir

基于Python实现一个简单的题库与在线考试系统

《基于Python实现一个简单的题库与在线考试系统》在当今信息化教育时代,在线学习与考试系统已成为教育技术领域的重要组成部分,本文就来介绍一下如何使用Python和PyQt5框架开发一个名为白泽题库系... 目录概述功能特点界面展示系统架构设计类结构图Excel题库填写格式模板题库题目填写格式表核心数据结构

Go语言中Recover机制的使用

《Go语言中Recover机制的使用》Go语言的recover机制通过defer函数捕获panic,实现异常恢复与程序稳定性,具有一定的参考价值,感兴趣的可以了解一下... 目录引言Recover 的基本概念基本代码示例简单的 Recover 示例嵌套函数中的 Recover项目场景中的应用Web 服务器中

C/C++ chrono简单使用场景示例详解

《C/C++chrono简单使用场景示例详解》:本文主要介绍C/C++chrono简单使用场景示例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友... 目录chrono使用场景举例1 输出格式化字符串chrono使用场景China编程举例1 输出格式化字符串示

Jvm sandbox mock机制的实践过程

《Jvmsandboxmock机制的实践过程》:本文主要介绍Jvmsandboxmock机制的实践过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、背景二、定义一个损坏的钟1、 Springboot工程中创建一个Clock类2、 添加一个Controller

windows和Linux安装Jmeter与简单使用方式

《windows和Linux安装Jmeter与简单使用方式》:本文主要介绍windows和Linux安装Jmeter与简单使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录Windows和linux安装Jmeter与简单使用一、下载安装包二、JDK安装1.windows设

Dubbo之SPI机制的实现原理和优势分析

《Dubbo之SPI机制的实现原理和优势分析》:本文主要介绍Dubbo之SPI机制的实现原理和优势,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Dubbo中SPI机制的实现原理和优势JDK 中的 SPI 机制解析Dubbo 中的 SPI 机制解析总结Dubbo中