YOLOv8 | 有效涨点,添加GAM注意力机制,使用Wise-IoU有效提升目标检测效果(附报错解决技巧,全网独家)

本文主要是介绍YOLOv8 | 有效涨点,添加GAM注意力机制,使用Wise-IoU有效提升目标检测效果(附报错解决技巧,全网独家),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 目录

摘要

基本原理

通道注意力机制

空间注意力机制

GAM代码实现 

Wise-IoU 

WIoU代码实现

yaml文件编写

完整代码分享(含多种注意力机制)


摘要

人们已经研究了各种注意力机制来提高各种计算机视觉任务的性能。然而,现有方法忽视了保留通道和空间方面的信息以增强跨维度交互的重要性。因此,我们提出了一种全局注意力机制,通过减少信息减少和放大全局交互表示来提高深度神经网络的性能。引入了具有多层感知器的 3D 排列,用于通道注意以及卷积空间注意子模块。在 CIFAR-100 和 ImageNet-1K 上对所提出的图像分类任务机制的评估表明,我们的方法稳定优于最近使用 ResNet 和轻量级 MobileNet 的几种注意力机制。

基本原理

目标的设计是一种减少信息缩减并放大全局维度交互特征的机制。我们采用 CBAM 的顺序通道空间注意力机制并重新设计子模块。整个过程如图 所示。

GAM结构图
通道注意力机制

通道注意力子模块使用 3D 排列来保留三个维度的信息。然后,它使用两层 MLP(多层感知器)放大跨维度通道空间依赖性。 (MLP是一种编码器-解码器结构,其缩减比为r,与BAM相同。)通道注意子模块如图所示。 

通道注意力子模块
空间注意力机制

在空间注意力子模块中,为了关注空间信息,我们使用两个卷积层进行空间信息融合。我们还使用与 BAM 相同的通道注意子模块的缩减率 r。同时,最大池化会减少信息并产生负面影响。我们删除池化以进一步保留特征图。因此,空间注意力模块有时会显着增加参数的数量。为了防止参数显着增加,我们在 ResNet50 中采用带有通道洗牌的组卷积。没有组卷积的空间注意力子模块如图所示。 

空间注意力子模块
GAM代码实现 
class GAM_Attention(nn.Module):def __init__(self, c1, c2, group=True, rate=4):super(GAM_Attention, self).__init__()self.channel_attention = nn.Sequential(nn.Linear(c1, int(c1 / rate)),nn.ReLU(inplace=True),nn.Linear(int(c1 / rate), c1))self.spatial_attention = nn.Sequential(nn.Conv2d(c1, c1 // rate, kernel_size=7, padding=3, groups=rate) if group else nn.Conv2d(c1, int(c1 / rate),kernel_size=7,padding=3),nn.BatchNorm2d(int(c1 / rate)),nn.ReLU(inplace=True),nn.Conv2d(c1 // rate, c2, kernel_size=7, padding=3, groups=rate) if group else nn.Conv2d(int(c1 / rate), c2,kernel_size=7,padding=3),nn.BatchNorm2d(c2))def forward(self, x):b, c, h, w = x.shapex_permute = x.permute(0, 2, 3, 1).view(b, -1, c)x_att_permute = self.channel_attention(x_permute).view(b, h, w, c)x_channel_att = x_att_permute.permute(0, 3, 1, 2)# x_channel_att=channel_shuffle(x_channel_att,4) #last shufflex = x * x_channel_attx_spatial_att = self.spatial_attention(x).sigmoid()x_spatial_att = channel_shuffle(x_spatial_att, 4)  # last shuffleout = x * x_spatial_att# out=channel_shuffle(out,4) #last shufflereturn out

以上代码添加在 ./ultralytics/nn/modules/conv.py 中

Wise-IoU 

Yolov7提出的损失函数是GIoU(Generalized Intersection over Union),能在更广义的层面上计算IoU(Intersection over Union),但是当两个预测框完全重合时,不能反映出实际情况,此时GIoU就要退化为IoU,并且GIoU对每个预测框与真实框均要计算最小外接框,故损失函数计算及收敛速度受到限制。
为了弥补这种遗憾,改进的网络中使用了WIoU(Wise-IoU)作为损失函数。WIoU v3作为边界框回归损失,包含一种动态非单调机制,并设计了一种合理的梯度增益分配,该策略减少了极端样本中出现的大梯度或有害梯度。该损失方法计算更多地关注普通质量的样本,进而提高网络模型的泛化能力和整体性能。

虽然几种主流损失函数都采用静态聚焦机制,但WIoU不仅考虑了方位角、质心距离和重叠面积,还引入了动态非单调聚焦机制。 WIoU应用合理的梯度增益分配策略来评估锚框的质量。WIoU有三个版本。 WIoU v1 设计了基于注意力的预测框损失,WIoU v2 和 WIoU v3 添加了聚焦系数。

wiou原理图

最小的包围盒(绿色)和中心点的连接(红色),其中并集的面积为 Su = wh + wgthgt − WiHi .

WIoU代码实现
def WIoU(cls, pred, target, self=None):self = self if self else cls(pred, target)dist = torch.exp(self.l2_center / self.l2_box.detach())return self._scaled_loss(dist * self.iou)

 下面的代码替换loss.py的class BboxLoss

class BboxLoss(nn.Module):def __init__(self, reg_max, use_dfl=False):"""Initialize the BboxLoss module with regularization maximum and DFL settings."""super().__init__()self.reg_max = reg_maxself.use_dfl = use_dfldef forward(self, pred_dist, pred_bboxes, anchor_points, target_bboxes, target_scores, target_scores_sum, fg_mask):"""IoU loss."""weight = target_scores.sum(-1)[fg_mask].unsqueeze(-1)loss,iou = bbox_iou(pred_bboxes[fg_mask], target_bboxes[fg_mask], xywh=False,type_='WIoU')loss_iou=loss.sum()/target_scores_sum# DFL lossif self.use_dfl:target_ltrb = bbox2dist(anchor_points, target_bboxes, self.reg_max)loss_dfl = self._df_loss(pred_dist[fg_mask].view(-1, self.reg_max + 1), target_ltrb[fg_mask]) * weightloss_dfl = loss_dfl.sum() / target_scores_sumelse:loss_dfl = torch.tensor(0.0).to(pred_dist.device)return loss_iou, loss_dfl
yaml文件编写
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 1  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'# [depth, width, max_channels]n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPss: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPsm: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPsl: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPsx: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs# YOLOv8.0n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2- [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4- [-1, 3, C2f, [128, True]]- [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8- [-1, 6, C2f, [256, True]]- [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16- [-1, 6, C2f, [512, True]]- [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32- [-1, 3, C2f, [1024, True]]- [-1, 3, GAM_Attention, [1024]]- [-1, 1, SPPF, [1024, 5]]  # 10# YOLOv8.0n head
head:- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 6], 1, Concat, [1]]  # cat backbone P4- [-1, 3, C2f, [512]]  # 13#- [-1, 1, GAM_Attention, [512,512]]- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 4], 1, Concat, [1]]  # cat backbone P3- [-1, 3, C2f, [256]]  # 16 (P3/8-small)#- [-1, 1, GAM_Attention, [256,256]]- [-1, 1, Conv, [256, 3, 2]]- [[-1, 13], 1, Concat, [1]]  # cat head P4- [-1, 3, C2f, [512]]  # 19 (P4/16-medium)#- [-1, 1, GAM_Attention, [512,512]]- [-1, 1, Conv, [512, 3, 2]]- [[-1, 10], 1, Concat, [1]]  # cat head P5- [-1, 3, C2f, [1024]]  # 22 (P5/32-large)#- [-1, 1, GAM_Attention, [1024,1024]]- [[16, 19, 22], 1, Detect, [nc]]  # Detect(P3, P4, P5)
完整代码分享(含多种注意力机制)

内涵SA,CBAM,GAM,ECA等多种注意力机制

链接: https://pan.baidu.com/s/1T9bVifTPCRMv2t7eREsuEw?pwd=nbrt 提取码: nbrt 

报错解决办法

YOLOv8 | 添加注意力机制报错KeyError:已解决,详细步骤-CSDN博客

这篇关于YOLOv8 | 有效涨点,添加GAM注意力机制,使用Wise-IoU有效提升目标检测效果(附报错解决技巧,全网独家)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/814309

相关文章

使用Vue-ECharts实现数据可视化图表功能

《使用Vue-ECharts实现数据可视化图表功能》在前端开发中,经常会遇到需要展示数据可视化的需求,比如柱状图、折线图、饼图等,这类需求不仅要求我们准确地将数据呈现出来,还需要兼顾美观与交互体验,所... 目录前言为什么选择 vue-ECharts?1. 基于 ECharts,功能强大2. 更符合 Vue

如何合理使用Spring的事务方式

《如何合理使用Spring的事务方式》:本文主要介绍如何合理使用Spring的事务方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、介绍1.1、底层构造1.1.事务管理器1.2.事务定义信息1.3.事务状态1.4.联系1.2、特点1.3、原理2. Sprin

Vue中插槽slot的使用示例详解

《Vue中插槽slot的使用示例详解》:本文主要介绍Vue中插槽slot的使用示例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、插槽是什么二、插槽分类2.1 匿名插槽2.2 具名插槽2.3 作用域插槽三、插槽的基本使用3.1 匿名插槽

springboot+vue项目怎么解决跨域问题详解

《springboot+vue项目怎么解决跨域问题详解》:本文主要介绍springboot+vue项目怎么解决跨域问题的相关资料,包括前端代理、后端全局配置CORS、注解配置和Nginx反向代理,... 目录1. 前端代理(开发环境推荐)2. 后端全局配置 CORS(生产环境推荐)3. 后端注解配置(按接口

使用WPF实现窗口抖动动画效果

《使用WPF实现窗口抖动动画效果》在用户界面设计中,适当的动画反馈可以提升用户体验,尤其是在错误提示、操作失败等场景下,窗口抖动作为一种常见且直观的视觉反馈方式,常用于提醒用户注意当前状态,本文将详细... 目录前言实现思路概述核心代码实现1、 获取目标窗口2、初始化基础位置值3、创建抖动动画4、动画完成后

uniapp小程序中实现无缝衔接滚动效果代码示例

《uniapp小程序中实现无缝衔接滚动效果代码示例》:本文主要介绍uniapp小程序中实现无缝衔接滚动效果的相关资料,该方法可以实现滚动内容中字的不同的颜色更改,并且可以根据需要进行艺术化更改和自... 组件滚动通知只能实现简单的滚动效果,不能实现滚动内容中的字进行不同颜色的更改,下面实现一个无缝衔接的滚动

PyQt5 QDate类的具体使用

《PyQt5QDate类的具体使用》QDate是PyQt5中处理日期的核心类,本文主要介绍了PyQt5QDate类的具体使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录核心功能常用方法及代码示例​1. 创建日期对象​2. 获取日期信息​3. 日期计算与比较​4. 日

Go语言使用slices包轻松实现排序功能

《Go语言使用slices包轻松实现排序功能》在Go语言开发中,对数据进行排序是常见的需求,Go1.18版本引入的slices包提供了简洁高效的排序解决方案,支持内置类型和用户自定义类型的排序操作,本... 目录一、内置类型排序:字符串与整数的应用1. 字符串切片排序2. 整数切片排序二、检查切片排序状态:

Python报错ModuleNotFoundError的10种解决方案

《Python报错ModuleNotFoundError的10种解决方案》在Python开发中,ModuleNotFoundError是最常见的运行时错误之一,通常由模块路径配置错误、依赖缺失或命名冲... 目录一、常见错误场景与原因分析二、10种解决方案与代码示例1. 检查并安装缺失模块2. 动态添加模块

使用Java将实体类转换为JSON并输出到控制台的完整过程

《使用Java将实体类转换为JSON并输出到控制台的完整过程》在软件开发的过程中,Java是一种广泛使用的编程语言,而在众多应用中,数据的传输和存储经常需要使用JSON格式,用Java将实体类转换为J... 在软件开发的过程中,Java是一种广泛使用的编程语言,而在众多应用中,数据的传输和存储经常需要使用j