【DL经典回顾】激活函数大汇总(十三)(Sinc SwiGLU附代码和详细公式)

本文主要是介绍【DL经典回顾】激活函数大汇总(十三)(Sinc SwiGLU附代码和详细公式),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

激活函数大汇总(十三)(Sinc & SwiGLU附代码和详细公式)

更多激活函数见激活函数大汇总列表

一、引言

欢迎来到我们深入探索神经网络核心组成部分——激活函数的系列博客。在人工智能的世界里,激活函数扮演着不可或缺的角色,它们决定着神经元的输出,并且影响着网络的学习能力与表现力。鉴于激活函数的重要性和多样性,我们将通过几篇文章的形式,本篇详细介绍两种激活函数,旨在帮助读者深入了解各种激活函数的特点、应用场景及其对模型性能的影响。

在接下来的文章中,我们将逐一探讨各种激活函数,从经典到最新的研究成果。

限于笔者水平,对于本博客存在的纰漏和错误,欢迎大家留言指正,我将不断更新。

二、Sinc

Sinc激活函数是一种在信号处理中广泛使用的函数,近年来也被探索用于深度学习模型中。它基于数学中的sinc函数,特别是在处理时间序列数据和频率分析时显示出其独特优势。

1. 数学定义

Sinc激活函数通常定义为:

Sinc ⁡ ( x ) = { 1 if  x = 0 sin ⁡ ( π x ) π x otherwise  \operatorname{Sinc}(x)= \begin{cases}1 & \text { if } x=0 \\ \frac{\sin (\pi x)}{\pi x} & \text { otherwise }\end{cases} Sinc(x)={1πxsin(πx) if x=0 otherwise 
这里, x x x是激活函数的输入。
在这里插入图片描述

2. 函数特性

  • 振荡和衰减:Sinc函数在 x = 0 x=0 x=0处取得最大值1,并随着 x = 0 x=0 x=0离开原点而振荡衰减。这种特性使得Sinc函数能够捕捉到数据中的周期性和频率信息。
  • 带宽选择:Sinc函数的形状和衰减速度与信号的带宽选择密切相关,这在处理有限带宽信号时非常重要。
  • 非局部性:与大多数激活函数相比,Sinc函数对输入的变化更加敏感,即使是远离原点的输入变化也能影响输出。

3. 导数

Sinc函数的导数是:

d d x Sinc ⁡ ( x ) = { 0 if  x = 0 π x cos ⁡ ( π x ) − sin ⁡ ( π x ) ( π x ) 2 otherwise  \frac{d}{d x} \operatorname{Sinc}(x)= \begin{cases}0 & \text { if } x=0 \\ \frac{\pi x \cos (\pi x)-\sin (\pi x)}{(\pi x)^2} & \text { otherwise }\end{cases} dxdSinc(x)={0(πx)2πxcos(πx)sin(πx) if x=0 otherwise 
导数在 x = 0 x=0 x=0处是连续的,尽管看起来像是未定义。通过洛必达法则,可以证明当 x = 0 x=0 x=0时,导数为0。

4. 使用场景与局限性

使用场景

  • 信号处理:在需要进行频率分析和带宽处理的信号处理应用中,Sinc激活函数能够有效地捕捉信号的周期性和频率特征。
  • 时间序列分析:在分析和预测周期性时间序列数据时,Sinc激活函数可以帮助模型更好地理解数据的频率信息。

局限性

  • 梯度消失:由于Sinc函数远离原点时的振荡衰减,梯度可能变得非常小,导致梯度消失问题。
  • 计算复杂性:Sinc函数涉及三角函数计算,相比于ReLU等简单激活函数,其计算成本更高。

5.代码实现

import numpy as npdef sinc_activation(x):"""计算Sinc激活函数的值。参数:x -- 输入值,可以是数值、NumPy数组或者多维数组。返回:Sinc激活后的结果。"""# 处理x=0的情况,以避免除以0的错误x_pi = np.pi * xresult = np.where(x == 0, 1, np.sin(x_pi) / x_pi)return result
解读
  • 处理除以零的情况np.where(x == 0, 1, np.sin(x_pi) / x_pi)这行代码首先检查x是否等于0。对于等于0的情况,直接返回1,这是因为根据Sinc函数的定义,当(x=0)时,函数值为1。
  • Sinc函数计算:对于非零的输入值,函数计算np.sin(x_pi) / x_pi,其中x_pi是输入x乘以π。这实现了Sinc函数的标准定义: Sinc ⁡ ( x ) = sin ⁡ ( π x ) π x \operatorname{Sinc}(x)=\frac{\sin (\pi x)}{\pi x} Sinc(x)=πxsin(πx)
  • 向量化操作:这个实现利用了NumPy的向量化操作能力,允许函数直接作用于整个数组,无需显式循环。这对于在深度学习模型中高效处理大量数据至关重要。
示例使用
# 创建一个从-10到10的数组
x = np.linspace(-10, 10, 100)
# 计算Sinc激活值
y = sinc_activation(x)# 使用Matplotlib绘制结果
import matplotlib.pyplot as pltplt.plot(x, y)
plt.title("Sinc Activation Function")
plt.xlabel("x")
plt.ylabel("Sinc(x)")
plt.grid(True)
plt.show()

这段代码演示了如何计算一系列输入值的Sinc激活,并使用Matplotlib绘制了Sinc函数的图像。

三、SwiGLU

SwiGLU (Swish Gated Linear Unit) 激活函数是深度学习中的一种激活函数,结合了Swish激活函数和GLU (Gated Linear Unit) 的特性。SwiGLU 旨在利用Swish的平滑非饱和性质和GLU的动态门控能力,提高模型在处理复杂数据时的表现力。尽管“SwiGLU”并非广泛认知的标准术语,这里的介绍基于其构成元素的理论基础。

1. 数学定义

考虑到SwiGLU的概念是基于Swish和GLU的结合,它的定义可能类似于:

SwiGLU ⁡ ( a , b ) = Swish ⁡ ( a ) ⊙ σ ( b ) \operatorname{SwiGLU}(a, b)=\operatorname{Swish}(a) \odot \sigma(b) SwiGLU(a,b)=Swish(a)σ(b)
其中:

  • a a a b b b是相同维度的输入向量。
  • Swish ⁡ ( a ) = a ⋅ σ ( a ) \operatorname{Swish}(a)=a \cdot \sigma(a) Swish(a)=aσ(a) σ ( a ) = 1 1 + e − a \sigma(a)=\frac{1}{1+e^{-a}} σ(a)=1+ea1是Sigmoid函数。
  • ⊙ \odot 表示元素乘法。
  • σ ( b ) \sigma(b) σ(b) 是对输入(b)应用Sigmoid激活函数。
    在这里插入图片描述

2. 函数特性

  • 自适应门控机制:通过 σ ( b ) \sigma(b) σ(b) a a a的Swish激活提供动态门控,使模型可以根据数据自适应地调整信息流。
  • 平滑激活:结合Swish激活函数的平滑性,SwiGLU既能捕获深层网络中的复杂特征,又能保持较好的梯度流动。
  • 增强的非线性和表现力:通过Swish和门控机制的结合,SwiGLU能够为深度学习模型提供强大的非线性表现力。

3. 导数

SwiGLU的导数结合了Swish函数和Sigmoid门控的导数,具体表达式较为复杂,需要通过链式法则计算。

4. 使用场景与局限性

使用场景

  • 复杂数据建模:在需要模型理解和处理具有复杂结构和关系的数据时,如自然语言处理(NLP)和图像识别。
  • 深度网络:在构建深层网络模型时,SwiGLU的非饱和特性和门控机制有助于缓解梯度消失问题,提升训练效果。

局限性

  • 计算开销:SwiGLU的计算相比简单的激活函数更为复杂,可能增加模型的训练时间和资源消耗。
  • 优化难度:高度非线性和动态门控机制可能使得模型参数的优化变得更加困难,需要细致的调参和足够的训练数据。

5.代码实现

import numpy as npdef sigmoid(x):return 1 / (1 + np.exp(-x))def swish(x):return x * sigmoid(x)def swiglu(a, b):"""参数:a -- 输入值,可以是数值、NumPy数组或者多维数组。b -- 用于门控的输入,维度应与a相同。返回:根据SwiGLU激活机制处理后的结果。"""return swish(a) * sigmoid(b)
解读
  • Swish激活swish(a)对输入(a)应用Swish激活函数,这部分是通过输入(a)和它的Sigmoid激活值相乘来实现的,有助于引入非线性并保持梯度流动良好。
  • Sigmoid门控sigmoid(b)为输入(b)应用Sigmoid函数,生成一个介于0和1之间的门控信号。这个信号决定了经过Swish激活的(a)有多少信息可以流过。
  • 元素乘法:最终通过将swish(a)的结果和sigmoid(b)的结果相乘,实现了SwiGLU激活。这样,(a)的每个元素都会根据(b)中对应元素的门控信号被调节。
示例使用
# 示例输入
a = np.array([0.5, -1, 2, -2])
b = np.array([1, -1, 0, 2])# 应用SwiGLU激活函数
output = swiglu(a, b)print("SwiGLU Output:", output)

这个例子展示了如何对两组输入ab应用SwiGLU激活函数。

四、参考文献

  • Oppenheim, A. V., & Schafer, R. W. (1975). “Digital Signal Processing.” Prentice-Hall. 这本书详细介绍了数字信号处理的基本概念,包括Sinc函数的使用和其在信号重建中的重要性。

这篇关于【DL经典回顾】激活函数大汇总(十三)(Sinc SwiGLU附代码和详细公式)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/814306

相关文章

8种快速易用的Python Matplotlib数据可视化方法汇总(附源码)

《8种快速易用的PythonMatplotlib数据可视化方法汇总(附源码)》你是否曾经面对一堆复杂的数据,却不知道如何让它们变得直观易懂?别慌,Python的Matplotlib库是你数据可视化的... 目录引言1. 折线图(Line Plot)——趋势分析2. 柱状图(Bar Chart)——对比分析3

PyTorch中cdist和sum函数使用示例详解

《PyTorch中cdist和sum函数使用示例详解》torch.cdist是PyTorch中用于计算**两个张量之间的成对距离(pairwisedistance)**的函数,常用于点云处理、图神经网... 目录基本语法输出示例1. 简单的 2D 欧几里得距离2. 批量形式(3D Tensor)3. 使用不

使用Java实现Navicat密码的加密与解密的代码解析

《使用Java实现Navicat密码的加密与解密的代码解析》:本文主要介绍使用Java实现Navicat密码的加密与解密,通过本文,我们了解了如何利用Java语言实现对Navicat保存的数据库密... 目录一、背景介绍二、环境准备三、代码解析四、核心代码展示五、总结在日常开发过程中,我们有时需要处理各种软

Java List排序实例代码详解

《JavaList排序实例代码详解》:本文主要介绍JavaList排序的相关资料,Java排序方法包括自然排序、自定义排序、Lambda简化及多条件排序,实现灵活且代码简洁,文中通过代码介绍的... 目录一、自然排序二、自定义排序规则三、使用 Lambda 表达式简化 Comparator四、多条件排序五、

Java 压缩包解压实现代码

《Java压缩包解压实现代码》Java标准库(JavaSE)提供了对ZIP格式的原生支持,通过java.util.zip包中的类来实现压缩和解压功能,本文将重点介绍如何使用Java来解压ZIP或RA... 目录一、解压压缩包1.zip解压代码实现:2.rar解压代码实现:3.调用解压方法:二、注意事项三、总

Java内存区域与内存溢出异常的详细探讨

《Java内存区域与内存溢出异常的详细探讨》:本文主要介绍Java内存区域与内存溢出异常的相关资料,分析异常原因并提供解决策略,如参数调整、代码优化等,帮助开发者排查内存问题,需要的朋友可以参考下... 目录一、引言二、Java 运行时数据区域(一)程序计数器(二)Java 虚拟机栈(三)本地方法栈(四)J

Linux实现简易版Shell的代码详解

《Linux实现简易版Shell的代码详解》本篇文章,我们将一起踏上一段有趣的旅程,仿照CentOS–Bash的工作流程,实现一个功能虽然简单,但足以让你深刻理解Shell工作原理的迷你Sh... 目录一、程序流程分析二、代码实现1. 打印命令行提示符2. 获取用户输入的命令行3. 命令行解析4. 执行命令

JAVA数组中五种常见排序方法整理汇总

《JAVA数组中五种常见排序方法整理汇总》本文给大家分享五种常用的Java数组排序方法整理,每种方法结合示例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录前言:法一:Arrays.sort()法二:冒泡排序法三:选择排序法四:反转排序法五:直接插入排序前言:几种常用的Java数组排序

SQL Server身份验证模式步骤和示例代码

《SQLServer身份验证模式步骤和示例代码》SQLServer是一个广泛使用的关系数据库管理系统,通常使用两种身份验证模式:Windows身份验证和SQLServer身份验证,本文将详细介绍身份... 目录身份验证方式的概念更改身份验证方式的步骤方法一:使用SQL Server Management S

MySQL 字符串截取函数及用法详解

《MySQL字符串截取函数及用法详解》在MySQL中,字符串截取是常见的操作,主要用于从字符串中提取特定部分,MySQL提供了多种函数来实现这一功能,包括LEFT()、RIGHT()、SUBST... 目录mysql 字符串截取函数详解RIGHT(str, length):从右侧截取指定长度的字符SUBST