车道线分割项目记录-Discriminative_loss

2024-03-16 03:50

本文主要是介绍车道线分割项目记录-Discriminative_loss,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

 一、损失函数原理

1. L_var

2. L_dist

二、代码


 一、损失函数原理

 主要是看明白了每个符号代表的意思就能明白了。

1. L_var

L_var是方差损失,也就是一条车道线的像素点之间的方差越小越好。上面的式子中,前面两个求和以及1/C,1/N,就是为了平均这个损失值,取所有的车道线,再取所有的像素点,计算完了对所有车道线以及所有像素点求均值。其中C就是车道线数量,N_c就是对应车道线所包含的像素点数量

后半部分的[x]_+,这个式子就是取max(0, x),因为损失值最小是0,因此如果里面的数小于0了,结果就是0。

再往里,||a-b||,这个就是求距离了,是二范数,也就是求个欧式距离。二者之间的距离如果比设定的像素点相似度阈值\delta _v,比如设为0.5,比这个还小,那么就认为他们确定属于一条线了,结果就是没有损失,就是0。如果比阈值大,就是有损失。

这样应该就能看明白第一个式子了,就是取一条车道线对应的所有像素点的均值\mu _c,然后用预测的属于这条车道线的所有像素点x_i,和均值计算距离,再减去阈值作为损失,如果距离很大,就有损失,距离小于设定的阈值,就没损失。就可以了。

2. L_dist

L_dist是距离损失,也就是两个车道线之间的距离,这个距离应该越大越好,因此,对距离取个负号,就变成了越小越好,就符合损失函数的特征了。上面式子的前一部分,也是用来求均值的,因为我们是要对两两之间求距离,也就是说,假如我们有3根车道线,分别为0,1,2,那么计算距离的时候,是计算了0-1  0-2  1-0   1-2   2-1  2-0之间的距离,正反都算了,因此总共算了C(C-1)这么多次。后半段式子里面的\delta _d,就是我们设定的两条线的距离阈值,比如设为3,要是比这个距离小,比如是1.2,那就有损失,要是两条线距离很大,是8,那说明已经很好了,就没损失了。

至于下面的alpha和beta,就是权重因子。假如距离损失一算,是4,5,6这么大的数,而方差损失一算,是0.04,0.03这么大的数,数量级不一样,那么就需要调整了,通过权重因子,把他们调整到同一个数量级。回归损失没有用到,就不说了。

二、代码

代码这里需要注意的是,计算过程中不要用a += b这种形式,而是要用a = a+b,否则无法求导。

def Discriminative_Loss(self, instance_label, embedding_out, delta_v=0.5, delta_d=3.0):# 一张一张地算embd_dim = embedding_out.shape[1]batch_size = embedding_out.shape[0]L_var = torch.tensor(0, dtype=embedding_out.dtype, device=embedding_out.device)L_dist = torch.tensor(0, dtype=embedding_out.dtype, device=embedding_out.device)for i in range(batch_size):# 对于每一条车道线,每个像素都有4维的embedding,因此,均值也是4维的img = embedding_out[i]label = instance_label[i]# 那么四条车道线,对应四个均值,就是4*4的,如果embedding是5维,那四条车道线的均值就是4*5的。labels = torch.unique(label)labels = labels[labels != 0]  # 1,2,3,4centroid_means = []for lane in labels:# 取出对于这条车道线,有像素的那些点的Maskmask = (label == lane)# 根据mask,取出点,每个点是4维的embeddingmasked_img = img[:, mask]mean_lane = torch.mean(masked_img, dim=1)centroid_means.append(mean_lane)# m个embedding后的像素点都减去均值(4,1),在第0个维度求范数,就会消去第0个维度,得到m个值L_var = L_var + torch.mean(F.relu((torch.norm(masked_img - mean_lane.reshape(embd_dim, 1), dim=0)) - delta_v) ** 2) / len(labels)# 堆叠起来,就得到了(num_lanes, embedding_dim)的四条车道线的均值,利用这个去求范数centroid_means = torch.stack(centroid_means)if len(labels) > 1:# 比如车道线4条,embedding 维度是5的话,前面堆叠之后的shape就是(4,5)# 变成2个,一个是(4,1,5),一个是(1,4,5)# 这样对这两个相减,在“5”这个维度上求范数,消去这个维度,得到的就是(4,4)的范数结果# 第i行第j列代表第i个线对第j个线求的范数,因此对角线是0,上下两部分对称c = len(labels)centroid_means1 = centroid_means.reshape(-1, 1, embd_dim)centroid_means2 = centroid_means.reshape(1, -1, embd_dim)dist = torch.norm(centroid_means1 - centroid_means2, dim=2)dist =dist+ torch.eye(c, dtype=dist.dtype, device=dist.device) * delta_d# 对角线加上delta_d,再按照公式求即可L_dist = L_dist + torch.sum((F.relu(-dist + delta_d) ** 2) / (c * (c - 1) * 2))L_var =L_var / batch_sizeL_dist =L_dist / batch_sizereturn L_var, L_dist

这篇关于车道线分割项目记录-Discriminative_loss的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/814200

相关文章

在ASP.NET项目中如何使用C#生成二维码

《在ASP.NET项目中如何使用C#生成二维码》二维码(QRCode)已广泛应用于网址分享,支付链接等场景,本文将以ASP.NET为示例,演示如何实现输入文本/URL,生成二维码,在线显示与下载的完整... 目录创建前端页面(Index.cshtml)后端二维码生成逻辑(Index.cshtml.cs)总结

Spring Boot项目如何使用外部application.yml配置文件启动JAR包

《SpringBoot项目如何使用外部application.yml配置文件启动JAR包》文章介绍了SpringBoot项目通过指定外部application.yml配置文件启动JAR包的方法,包括... 目录Spring Boot项目中使用外部application.yml配置文件启动JAR包一、基本原理

Springboot项目登录校验功能实现

《Springboot项目登录校验功能实现》本文介绍了Web登录校验的重要性,对比了Cookie、Session和JWT三种会话技术,分析其优缺点,并讲解了过滤器与拦截器的统一拦截方案,推荐使用JWT... 目录引言一、登录校验的基本概念二、HTTP协议的无状态性三、会话跟android踪技术1. Cook

springboot项目中集成shiro+jwt完整实例代码

《springboot项目中集成shiro+jwt完整实例代码》本文详细介绍如何在项目中集成Shiro和JWT,实现用户登录校验、token携带及接口权限管理,涉及自定义Realm、ModularRe... 目录简介目的需要的jar集成过程1.配置shiro2.创建自定义Realm2.1 LoginReal

基于Spring Boot 的小区人脸识别与出入记录管理系统功能

《基于SpringBoot的小区人脸识别与出入记录管理系统功能》文章介绍基于SpringBoot框架与百度AI人脸识别API的小区出入管理系统,实现自动识别、记录及查询功能,涵盖技术选型、数据模型... 目录系统功能概述技术栈选择核心依赖配置数据模型设计出入记录实体类出入记录查询表单出入记录 VO 类(用于

idea Maven Springboot多模块项目打包时90%的问题及解决方案

《ideaMavenSpringboot多模块项目打包时90%的问题及解决方案》:本文主要介绍ideaMavenSpringboot多模块项目打包时90%的问题及解决方案,具有很好的参考价值,... 目录1. 前言2. 问题3. 解决办法4. jar 包冲突总结1. 前言之所以写这篇文章是因为在使用Mav

精选20个好玩又实用的的Python实战项目(有图文代码)

《精选20个好玩又实用的的Python实战项目(有图文代码)》文章介绍了20个实用Python项目,涵盖游戏开发、工具应用、图像处理、机器学习等,使用Tkinter、PIL、OpenCV、Kivy等库... 目录① 猜字游戏② 闹钟③ 骰子模拟器④ 二维码⑤ 语言检测⑥ 加密和解密⑦ URL缩短⑧ 音乐播放

Springboot项目启动失败提示找不到dao类的解决

《Springboot项目启动失败提示找不到dao类的解决》SpringBoot启动失败,因ProductServiceImpl未正确注入ProductDao,原因:Dao未注册为Bean,解决:在启... 目录错误描述原因解决方法总结***************************APPLICA编

java中pdf模版填充表单踩坑实战记录(itextPdf、openPdf、pdfbox)

《java中pdf模版填充表单踩坑实战记录(itextPdf、openPdf、pdfbox)》:本文主要介绍java中pdf模版填充表单踩坑的相关资料,OpenPDF、iText、PDFBox是三... 目录准备Pdf模版方法1:itextpdf7填充表单(1)加入依赖(2)代码(3)遇到的问题方法2:pd

Python实现PDF按页分割的技术指南

《Python实现PDF按页分割的技术指南》PDF文件处理是日常工作中的常见需求,特别是当我们需要将大型PDF文档拆分为多个部分时,下面我们就来看看如何使用Python创建一个灵活的PDF分割工具吧... 目录需求分析技术方案工具选择安装依赖完整代码实现使用说明基本用法示例命令输出示例技术亮点实际应用场景扩