互斥量、条件变量与pthread_cond_wait()函数的使用,详解

2024-03-16 00:32

本文主要是介绍互斥量、条件变量与pthread_cond_wait()函数的使用,详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 首先pthread_cond_wait 的定义是这样的

The pthread_cond_wait()and pthread_cond_timedwait()functions are used to block on a condition variable. They are called with mutexlocked by the calling thread or undefined behaviour will result.

These functions atomically release mutexand cause the calling thread to block on the condition variable cond;atomically here means "atomically with respect to access by anotherthread to the mutex and then the condition variable". That is, ifanother thread is able to acquire the mutex after the about-to-blockthread has released it, then a subsequent call to pthread_cond_signal()or pthread_cond_broadcast()in that thread behaves as if it were issued after the about-to-block thread has blocked.

2. 由上解释可以看出,pthread_cond_wait() 必须与pthread_mutex 配套使用。

pthread_cond_wait()函数一进入wait状态就会自动release mutex.

In Thread1:

pthread_mutex_lock(&m_mutex);   
pthread_cond_wait(&m_cond,&m_mutex);   
pthread_mutex_unlock(&m_mutex);  

In Thread2:

pthread_mutex_lock(&m_mutex);   
pthread_cond_signal(&m_cond);   
pthread_mutex_unlock(&m_mutex);  

为什么要与pthread_mutex 一起使用呢?这是为了应对线程1在调用pthread_cond_wait()但线程1还没有进入wait cond的状态的时候,此时线程2调用了cond_singal 的情况。 如果不用mutex锁的话,这个cond_singal就丢失了。加了锁的情况是,线程2必须等到 mutex被释放(也就是 pthread_cod_wait() 进入wait_cond状态 并自动释放mutex) 的时候才能调用cond_singal.

3. pthread_cond_wait() 一旦wait成功获得cond 条件的时候会自动 lock mutex.

这就会出现另一个问题。这是因为

The pthread_cond_wait()and pthread_cond_timedwait()is a cancellation point.

In Thread3:

pthread_cancel(&m_thread);

pthread_join();

因为pthread_cond_wait()and pthread_cond_timedwait()   是线程退出点函数,因此在Thread3中

可以调用pthread_cancel()来退出线程1。那样显然线程1会在pthread_cond_wait(&m_cond,&m_mutex);    和pthread_mutex_unlock(&m_mutex); 之间退出,    pthread_cond_wait()函数返回后自动lock住了mutex,这个时候线程1退出(并没有运行到pthread_mutex_unlock()),如果Thread2这个时候就再也得不到lock状态了。

通常解决这个问题的办法如下

voidcleanup(void*arg)
{
   pthread_mutex_unlock(&mutex);
}
void* thread1(void* arg)
{
    pthread_cleanup_push(cleanup, NULL); // thread cleanup handler
    pthread_mutex_lock(&mutex);
   pthread_cond_wait(&cond, &mutex);
   pthread_mutex_unlock(&mutex);
   pthread_cleanup_pop(0);
}




LINUX环境下多线程编程肯定会遇到需要条件变量的情况,此时必然要使用pthread_cond_wait()函数。但这个函数的执行过程比较难于理解。
    pthread_cond_wait()的工作流程如下(以MAN中的EXAMPLE为例):
       Consider two shared variables x and y, protected by the mutex mut, and a condition vari-
       able cond that is to be signaled whenever x becomes greater than y.

              int x,y;
              pthread_mutex_t mut = PTHREAD_MUTEX_INITIALIZER;
              pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

       Waiting until x is greater than y is performed as follows:

              pthread_mutex_lock(&mut);
              while (x <= y) {
                      pthread_cond_wait(&cond, &mut);
              }
              /* operate on x and y */
              pthread_mutex_unlock(&mut);

       Modifications on x and y that may cause x to become greater than y should signal the con-
       dition if needed:

              pthread_mutex_lock(&mut);
              /* modify x and y */
              if (x > y) pthread_cond_broadcast(&cond);
              pthread_mutex_unlock(&mut);

     这个例子的意思是,两个线程要修改X和Y的值,第一个线程当X<=Y时就挂起,直到X>Y时才继续执行(由第二个线程可能会修改X,Y的值,当X>Y时唤醒第一个线程),即首先初始化一个普通互斥量mut和一个条件变量cond。之后分别在两个线程中分别执行如下函数体:

               pthread_mutex_lock(&mut);
              while (x <= y) {
                      pthread_cond_wait(&cond, &mut);
              }
              /* operate on x and y */
              pthread_mutex_unlock(&mut);

和:       pthread_mutex_lock(&mut);
              /* modify x and y */
              if (x > y) pthread_cond_signal(&cond);
              pthread_mutex_unlock(&mut);

    其实函数的执行过程非常简单,在第一个线程执行到pthread_cond_wait(&cond,&mut)时,此时如果X<=Y,则此函数就将mut互斥量解锁,再将cond条件变量加锁,此时第一个线程挂起(不占用任何CPU周期)。
    而在第二个线程中,本来因为mut被第一个线程锁住而阻塞,此时因为mut已经释放,所以可以获得锁mut,并且进行修改X和Y的值,在修改之后,一个IF语句判定是不是X>Y,如果是,则此时pthread_cond_signal()函数会唤醒第一个线程,并在下一句中释放互斥量mut。然后第一个线程开始从pthread_cond_wait()执行,首先要再次锁mut, 如果锁成功,再进行条件的判断(至于为什么用WHILE,即在被唤醒之后还要再判断,后面有原因分析),如果满足条件,则被唤醒进行处理,最后释放互斥量mut

   至于为什么在被唤醒之后还要再次进行条件判断(即为什么要使用while循环来判断条件),是因为可能有“惊群效应”。有人觉得此处既然是被唤醒的,肯定是满足条件了,其实不然。如果是多个线程都在等待这个条件,而同时只能有一个线程进行处理,此时就必须要再次条件判断,以使只有一个线程进入临界区处理。对此,转来一段:

引用下POSIX的RATIONALE: 

Condition Wait Semantics 

It is important to note that when pthread_cond_wait() andpthread_cond_timedwait() return without error, the associated predicatemay still be false. Similarly, when pthread_cond_timedwait() returnswith the timeout error, the associated predicate may be true due to anunavoidable race between the expiration of the timeout and thepredicate state change. 

The application needs to recheck the predicate on any return because itcannot be sure there is another thread waiting on the thread to handlethe signal, and if there is not then the signal is lost. The burden ison the application to check the predicate. 

Some implementations, particularly on a multi-processor, may sometimescause multiple threads to wake up when the condition variable issignaled simultaneously on different processors. 

In general, whenever a condition wait returns, the thread has tore-evaluate the predicate associated with the condition wait todetermine whether it can safely proceed, should wait again, or shoulddeclare a timeout. A return from the wait does not imply that theassociated predicate is either true or false. 

It is thus recommended that a condition wait be enclosed in the equivalent of a "while loop" that checks the predicate. 

从上文可以看出:
1,pthread_cond_signal在多处理器上可能同时唤醒多个线程,当你只能让一个线程处理某个任务时,其它被唤醒的线程就需要继续wait,while循环的意义就体现在这里了,而且规范要求pthread_cond_signal至少唤醒一个pthread_cond_wait上的线程,其实有些实现为了简单在单处理器上也会唤醒多个线程. 
2,某些应用,如线程池,pthread_cond_broadcast唤醒全部线程,但我们通常只需要一部分线程去做执行任务,所以其它的线程需要继续wait.所以强烈推荐此处使用while循环.

       其实说白了很简单,就是pthread_cond_signal()也可能唤醒多个线程,而如果你同时只允许一个线程访问的话,就必须要使用while来进行条件判断,以保证临界区内只有一个线程在处理。

这篇关于互斥量、条件变量与pthread_cond_wait()函数的使用,详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/813774

相关文章

SpringBoot中@Value注入静态变量方式

《SpringBoot中@Value注入静态变量方式》SpringBoot中静态变量无法直接用@Value注入,需通过setter方法,@Value(${})从属性文件获取值,@Value(#{})用... 目录项目场景解决方案注解说明1、@Value("${}")使用示例2、@Value("#{}"php

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

Spring Security简介、使用与最佳实践

《SpringSecurity简介、使用与最佳实践》SpringSecurity是一个能够为基于Spring的企业应用系统提供声明式的安全访问控制解决方案的安全框架,本文给大家介绍SpringSec... 目录一、如何理解 Spring Security?—— 核心思想二、如何在 Java 项目中使用?——

springboot中使用okhttp3的小结

《springboot中使用okhttp3的小结》OkHttp3是一个JavaHTTP客户端,可以处理各种请求类型,比如GET、POST、PUT等,并且支持高效的HTTP连接池、请求和响应缓存、以及异... 在 Spring Boot 项目中使用 OkHttp3 进行 HTTP 请求是一个高效且流行的方式。

MySQL的JDBC编程详解

《MySQL的JDBC编程详解》:本文主要介绍MySQL的JDBC编程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言一、前置知识1. 引入依赖2. 认识 url二、JDBC 操作流程1. JDBC 的写操作2. JDBC 的读操作总结前言本文介绍了mysq

Redis 的 SUBSCRIBE命令详解

《Redis的SUBSCRIBE命令详解》Redis的SUBSCRIBE命令用于订阅一个或多个频道,以便接收发送到这些频道的消息,本文给大家介绍Redis的SUBSCRIBE命令,感兴趣的朋友跟随... 目录基本语法工作原理示例消息格式相关命令python 示例Redis 的 SUBSCRIBE 命令用于订

Java使用Javassist动态生成HelloWorld类

《Java使用Javassist动态生成HelloWorld类》Javassist是一个非常强大的字节码操作和定义库,它允许开发者在运行时创建新的类或者修改现有的类,本文将简单介绍如何使用Javass... 目录1. Javassist简介2. 环境准备3. 动态生成HelloWorld类3.1 创建CtC

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e