互斥量、条件变量与pthread_cond_wait()函数的使用,详解

2024-03-16 00:32

本文主要是介绍互斥量、条件变量与pthread_cond_wait()函数的使用,详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 首先pthread_cond_wait 的定义是这样的

The pthread_cond_wait()and pthread_cond_timedwait()functions are used to block on a condition variable. They are called with mutexlocked by the calling thread or undefined behaviour will result.

These functions atomically release mutexand cause the calling thread to block on the condition variable cond;atomically here means "atomically with respect to access by anotherthread to the mutex and then the condition variable". That is, ifanother thread is able to acquire the mutex after the about-to-blockthread has released it, then a subsequent call to pthread_cond_signal()or pthread_cond_broadcast()in that thread behaves as if it were issued after the about-to-block thread has blocked.

2. 由上解释可以看出,pthread_cond_wait() 必须与pthread_mutex 配套使用。

pthread_cond_wait()函数一进入wait状态就会自动release mutex.

In Thread1:

pthread_mutex_lock(&m_mutex);   
pthread_cond_wait(&m_cond,&m_mutex);   
pthread_mutex_unlock(&m_mutex);  

In Thread2:

pthread_mutex_lock(&m_mutex);   
pthread_cond_signal(&m_cond);   
pthread_mutex_unlock(&m_mutex);  

为什么要与pthread_mutex 一起使用呢?这是为了应对线程1在调用pthread_cond_wait()但线程1还没有进入wait cond的状态的时候,此时线程2调用了cond_singal 的情况。 如果不用mutex锁的话,这个cond_singal就丢失了。加了锁的情况是,线程2必须等到 mutex被释放(也就是 pthread_cod_wait() 进入wait_cond状态 并自动释放mutex) 的时候才能调用cond_singal.

3. pthread_cond_wait() 一旦wait成功获得cond 条件的时候会自动 lock mutex.

这就会出现另一个问题。这是因为

The pthread_cond_wait()and pthread_cond_timedwait()is a cancellation point.

In Thread3:

pthread_cancel(&m_thread);

pthread_join();

因为pthread_cond_wait()and pthread_cond_timedwait()   是线程退出点函数,因此在Thread3中

可以调用pthread_cancel()来退出线程1。那样显然线程1会在pthread_cond_wait(&m_cond,&m_mutex);    和pthread_mutex_unlock(&m_mutex); 之间退出,    pthread_cond_wait()函数返回后自动lock住了mutex,这个时候线程1退出(并没有运行到pthread_mutex_unlock()),如果Thread2这个时候就再也得不到lock状态了。

通常解决这个问题的办法如下

voidcleanup(void*arg)
{
   pthread_mutex_unlock(&mutex);
}
void* thread1(void* arg)
{
    pthread_cleanup_push(cleanup, NULL); // thread cleanup handler
    pthread_mutex_lock(&mutex);
   pthread_cond_wait(&cond, &mutex);
   pthread_mutex_unlock(&mutex);
   pthread_cleanup_pop(0);
}




LINUX环境下多线程编程肯定会遇到需要条件变量的情况,此时必然要使用pthread_cond_wait()函数。但这个函数的执行过程比较难于理解。
    pthread_cond_wait()的工作流程如下(以MAN中的EXAMPLE为例):
       Consider two shared variables x and y, protected by the mutex mut, and a condition vari-
       able cond that is to be signaled whenever x becomes greater than y.

              int x,y;
              pthread_mutex_t mut = PTHREAD_MUTEX_INITIALIZER;
              pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

       Waiting until x is greater than y is performed as follows:

              pthread_mutex_lock(&mut);
              while (x <= y) {
                      pthread_cond_wait(&cond, &mut);
              }
              /* operate on x and y */
              pthread_mutex_unlock(&mut);

       Modifications on x and y that may cause x to become greater than y should signal the con-
       dition if needed:

              pthread_mutex_lock(&mut);
              /* modify x and y */
              if (x > y) pthread_cond_broadcast(&cond);
              pthread_mutex_unlock(&mut);

     这个例子的意思是,两个线程要修改X和Y的值,第一个线程当X<=Y时就挂起,直到X>Y时才继续执行(由第二个线程可能会修改X,Y的值,当X>Y时唤醒第一个线程),即首先初始化一个普通互斥量mut和一个条件变量cond。之后分别在两个线程中分别执行如下函数体:

               pthread_mutex_lock(&mut);
              while (x <= y) {
                      pthread_cond_wait(&cond, &mut);
              }
              /* operate on x and y */
              pthread_mutex_unlock(&mut);

和:       pthread_mutex_lock(&mut);
              /* modify x and y */
              if (x > y) pthread_cond_signal(&cond);
              pthread_mutex_unlock(&mut);

    其实函数的执行过程非常简单,在第一个线程执行到pthread_cond_wait(&cond,&mut)时,此时如果X<=Y,则此函数就将mut互斥量解锁,再将cond条件变量加锁,此时第一个线程挂起(不占用任何CPU周期)。
    而在第二个线程中,本来因为mut被第一个线程锁住而阻塞,此时因为mut已经释放,所以可以获得锁mut,并且进行修改X和Y的值,在修改之后,一个IF语句判定是不是X>Y,如果是,则此时pthread_cond_signal()函数会唤醒第一个线程,并在下一句中释放互斥量mut。然后第一个线程开始从pthread_cond_wait()执行,首先要再次锁mut, 如果锁成功,再进行条件的判断(至于为什么用WHILE,即在被唤醒之后还要再判断,后面有原因分析),如果满足条件,则被唤醒进行处理,最后释放互斥量mut

   至于为什么在被唤醒之后还要再次进行条件判断(即为什么要使用while循环来判断条件),是因为可能有“惊群效应”。有人觉得此处既然是被唤醒的,肯定是满足条件了,其实不然。如果是多个线程都在等待这个条件,而同时只能有一个线程进行处理,此时就必须要再次条件判断,以使只有一个线程进入临界区处理。对此,转来一段:

引用下POSIX的RATIONALE: 

Condition Wait Semantics 

It is important to note that when pthread_cond_wait() andpthread_cond_timedwait() return without error, the associated predicatemay still be false. Similarly, when pthread_cond_timedwait() returnswith the timeout error, the associated predicate may be true due to anunavoidable race between the expiration of the timeout and thepredicate state change. 

The application needs to recheck the predicate on any return because itcannot be sure there is another thread waiting on the thread to handlethe signal, and if there is not then the signal is lost. The burden ison the application to check the predicate. 

Some implementations, particularly on a multi-processor, may sometimescause multiple threads to wake up when the condition variable issignaled simultaneously on different processors. 

In general, whenever a condition wait returns, the thread has tore-evaluate the predicate associated with the condition wait todetermine whether it can safely proceed, should wait again, or shoulddeclare a timeout. A return from the wait does not imply that theassociated predicate is either true or false. 

It is thus recommended that a condition wait be enclosed in the equivalent of a "while loop" that checks the predicate. 

从上文可以看出:
1,pthread_cond_signal在多处理器上可能同时唤醒多个线程,当你只能让一个线程处理某个任务时,其它被唤醒的线程就需要继续wait,while循环的意义就体现在这里了,而且规范要求pthread_cond_signal至少唤醒一个pthread_cond_wait上的线程,其实有些实现为了简单在单处理器上也会唤醒多个线程. 
2,某些应用,如线程池,pthread_cond_broadcast唤醒全部线程,但我们通常只需要一部分线程去做执行任务,所以其它的线程需要继续wait.所以强烈推荐此处使用while循环.

       其实说白了很简单,就是pthread_cond_signal()也可能唤醒多个线程,而如果你同时只允许一个线程访问的话,就必须要使用while来进行条件判断,以保证临界区内只有一个线程在处理。

这篇关于互斥量、条件变量与pthread_cond_wait()函数的使用,详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/813774

相关文章

gitlab安装及邮箱配置和常用使用方式

《gitlab安装及邮箱配置和常用使用方式》:本文主要介绍gitlab安装及邮箱配置和常用使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1.安装GitLab2.配置GitLab邮件服务3.GitLab的账号注册邮箱验证及其分组4.gitlab分支和标签的

spring中的ImportSelector接口示例详解

《spring中的ImportSelector接口示例详解》Spring的ImportSelector接口用于动态选择配置类,实现条件化和模块化配置,关键方法selectImports根据注解信息返回... 目录一、核心作用二、关键方法三、扩展功能四、使用示例五、工作原理六、应用场景七、自定义实现Impor

SpringBoot3应用中集成和使用Spring Retry的实践记录

《SpringBoot3应用中集成和使用SpringRetry的实践记录》SpringRetry为SpringBoot3提供重试机制,支持注解和编程式两种方式,可配置重试策略与监听器,适用于临时性故... 目录1. 简介2. 环境准备3. 使用方式3.1 注解方式 基础使用自定义重试策略失败恢复机制注意事项

nginx启动命令和默认配置文件的使用

《nginx启动命令和默认配置文件的使用》:本文主要介绍nginx启动命令和默认配置文件的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录常见命令nginx.conf配置文件location匹配规则图片服务器总结常见命令# 默认配置文件启动./nginx

在Windows上使用qemu安装ubuntu24.04服务器的详细指南

《在Windows上使用qemu安装ubuntu24.04服务器的详细指南》本文介绍了在Windows上使用QEMU安装Ubuntu24.04的全流程:安装QEMU、准备ISO镜像、创建虚拟磁盘、配置... 目录1. 安装QEMU环境2. 准备Ubuntu 24.04镜像3. 启动QEMU安装Ubuntu4

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

Windows下C++使用SQLitede的操作过程

《Windows下C++使用SQLitede的操作过程》本文介绍了Windows下C++使用SQLite的安装配置、CppSQLite库封装优势、核心功能(如数据库连接、事务管理)、跨平台支持及性能优... 目录Windows下C++使用SQLite1、安装2、代码示例CppSQLite:C++轻松操作SQ

一文深入详解Python的secrets模块

《一文深入详解Python的secrets模块》在构建涉及用户身份认证、权限管理、加密通信等系统时,开发者最不能忽视的一个问题就是“安全性”,Python在3.6版本中引入了专门面向安全用途的secr... 目录引言一、背景与动机:为什么需要 secrets 模块?二、secrets 模块的核心功能1. 基

一文详解MySQL如何设置自动备份任务

《一文详解MySQL如何设置自动备份任务》设置自动备份任务可以确保你的数据库定期备份,防止数据丢失,下面我们就来详细介绍一下如何使用Bash脚本和Cron任务在Linux系统上设置MySQL数据库的自... 目录1. 编写备份脚本1.1 创建并编辑备份脚本1.2 给予脚本执行权限2. 设置 Cron 任务2

一文详解如何在idea中快速搭建一个Spring Boot项目

《一文详解如何在idea中快速搭建一个SpringBoot项目》IntelliJIDEA作为Java开发者的‌首选IDE‌,深度集成SpringBoot支持,可一键生成项目骨架、智能配置依赖,这篇文... 目录前言1、创建项目名称2、勾选需要的依赖3、在setting中检查maven4、编写数据源5、开启热