【Linux基础系列之】pinctrl系统

2024-03-15 17:38

本文主要是介绍【Linux基础系列之】pinctrl系统,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  pinctrl子系统用于控制管脚管理soc的管脚,它通常可以以一组寄存器的形式存在,用于使能独立或成组管脚的复用、设置负载电流、设置驱动能力等;


(一) pinctrl系统概述

(1)基本概念

  管脚定义:管脚(也代指pad、金手指、ball,依据其封装不同)输入/输出线使用无符号整型数表示,范围为0到maxpin。这个数字空间是每个管脚控制器独有的,这样,一个系统中可能有几个此类的数字空间。管脚空间可以是稀疏的,空间中可能存在一些并没有管脚存在间隙。用struct pinctrl_dev实例化一个管脚控制器,同时会注册一个描述符到管脚控制架构,这个描述符包含一组为它控制管脚的管脚描述符(struct pinctrl_desc).

128 struct pinctrl_desc {
129     const char *name;
130     const struct pinctrl_pin_desc *pins;
131     unsigned int npins;
132     const struct pinctrl_ops *pctlops;
133     const struct pinmux_ops *pmxops;
134     const struct pinconf_ops *confops;
135     struct module *owner;
141 };

  通过struct pin_desc来描述每个物理pin脚:

147 struct pin_desc {
148     struct pinctrl_dev *pctldev;
149     const char *name;
150     bool dynamic_name;
151     /* These fields only added when supporting pinmux drivers */
152 #ifdef CONFIG_PINMUX
153     unsigned mux_usecount;
154     const char *mux_owner;
155     const struct pinctrl_setting_mux *mux_setting;
156     const char *gpio_owner;
157 #endif
158 };

  pin control subsystem的主要功能包括:

(1)管理系统中所有可以控制的pin。在系统初始化的时候,枚举所有可以控制的pin,并标识这些pin。

(2)管理这些pin的复用(Multiplexing)。对于SOC而言,其引脚除了配置成普通GPIO之外,若干个引脚还可以组成一个pin group,形成特定的功能。pin control subsystem要管理所有的pin group。

(3)配置这些pin的特性。例如配置该引脚上的pull-up/down电阻,配置drive strength等

下面依次介绍几个重要元素:


(a)Pin groups

  有时需要将很多pin组合在一起,以实现特定的功能,例如SPI接口、I2C接口等。因此pin controller需要以group为单位,访问、控制多个pin,这就是pin groups, 通过 pinctrl_ops定义的接口来访问操作group pin :

 90 struct pinctrl_ops {91     int (*get_groups_count) (struct pinctrl_dev *pctldev);92     const char *(*get_group_name) (struct pinctrl_dev *pctldev,93                        unsigned selector);94     int (*get_group_pins) (struct pinctrl_dev *pctldev,95                    unsigned selector,96                    const unsigned **pins,97                    unsigned *num_pins);98     void (*pin_dbg_show) (struct pinctrl_dev *pctldev, struct seq_file *s,99               unsigned offset); 
100     int (*dt_node_to_map) (struct pinctrl_dev *pctldev,
101                    struct device_node *np_config,
102                    struct pinctrl_map **map, unsigned *num_maps);
103     void (*dt_free_map) (struct pinctrl_dev *pctldev,
104                  struct pinctrl_map *map, unsigned num_maps);
105 };

get_groups_count():获取系统中pin groups的个数,后续的操作,将以相应的索引为单位(类似数组的下标,个数为数组的大小)。

get_group_name():获取指定group(由索引selector指定)的名称。

get_group_pins():获取指定group的所有pins(由索引selector指定),结果保存在pins(指针数组)和num_pins(指针)中。


(b)Pin configuration

  管脚有时可以被软件配置成多种方式,多数与它们作为输入/输出时的电气特性相关。例如,可以使一个输出管脚处于高阻状态,或是“三态”(意味着它被有效地断开连接)。你可以通过设置一个特定寄存器值将一个输入管脚与VDD或GND相连—上拉/下拉—以便在没有信号驱动管脚或是未连接时管脚上可以有个确定的值。体现在struct pinconf_ops数据结构中:

 41 pinconf_opsstruct pinconf_ops {42 #ifdef CONFIG_GENERIC_PINCONF43     bool is_generic;44 #endif                    45     int (*pin_config_get) ();        48     int (*pin_config_set) ();         52     int (*pin_config_group_get) ();        55     int (*pin_config_group_set) ();         59     int (*pin_config_dbg_parse_modify) ();        62     void (*pin_config_dbg_show) ();              65     void (*pin_config_group_dbg_show) ();            68     void (*pin_config_config_dbg_show) ();         71 };

pin_config_get() : 获取指定pin(管脚的编号,由2.1中pin的注册信息获得)当前配置,保存在config指针中(配置的具体含义,只有pinctrl driver自己知道,下同)。

pin_config_set() : 设置指定pin的配置(可以同时配置多个config,具体意义要由相应pinctrl driver解释)。

pin_config_group_get()、pin_config_group_set() : 获取或者设置指定pin group的配置项。


(c)Pin multiplexing

  PINMUX也称作padmux,ballmux,它是由芯片厂商依据应用,使用一个特定的物理管脚(ball/pad/finger/等等)进行多种扩展复用,以支持不同功能的电气封装的习惯。芯片使用这个方法将不同的功能多路复用到不同管脚的范围。现在的SOC系统会包含几个I2C、SPI、SDIO/MMC等功能块,它们可以通过管脚多路复用设置被路由到不同的管脚。因为GPIO常常不足,通常会将所有当前未被使用的管脚用作GPIO。

  SoC中的很多管脚可以配置为不同的功能,pinctrl subsystem使用struct pinmux_ops来抽象pinmux有关的操作;

 63 struct pinmux_ops {  64     int (*request) ();65     int (*free) ();66     int (*get_functions_count) ();67     const char *(*get_function_name) ();69     int (*get_function_groups) ();73     int (*set_mux) ();75     int (*gpio_request_enable) ();78     void (*gpio_disable_free) ();81     int (*gpio_set_direction) ();85     bool 

这篇关于【Linux基础系列之】pinctrl系统的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/812740

相关文章

linux ssh如何实现增加访问端口

《linuxssh如何实现增加访问端口》Linux中SSH默认使用22端口,为了增强安全性或满足特定需求,可以通过修改SSH配置来增加或更改SSH访问端口,具体步骤包括修改SSH配置文件、增加或修改... 目录1. 修改 SSH 配置文件2. 增加或修改端口3. 保存并退出编辑器4. 更新防火墙规则使用uf

Linux join命令的使用及说明

《Linuxjoin命令的使用及说明》`join`命令用于在Linux中按字段将两个文件进行连接,类似于SQL的JOIN,它需要两个文件按用于匹配的字段排序,并且第一个文件的换行符必须是LF,`jo... 目录一. 基本语法二. 数据准备三. 指定文件的连接key四.-a输出指定文件的所有行五.-o指定输出

Linux jq命令的使用解读

《Linuxjq命令的使用解读》jq是一个强大的命令行工具,用于处理JSON数据,它可以用来查看、过滤、修改、格式化JSON数据,通过使用各种选项和过滤器,可以实现复杂的JSON处理任务... 目录一. 简介二. 选项2.1.2.2-c2.3-r2.4-R三. 字段提取3.1 普通字段3.2 数组字段四.

Linux kill正在执行的后台任务 kill进程组使用详解

《Linuxkill正在执行的后台任务kill进程组使用详解》文章介绍了两个脚本的功能和区别,以及执行这些脚本时遇到的进程管理问题,通过查看进程树、使用`kill`命令和`lsof`命令,分析了子... 目录零. 用到的命令一. 待执行的脚本二. 执行含子进程的脚本,并kill2.1 进程查看2.2 遇到的

从基础到高级详解Go语言中错误处理的实践指南

《从基础到高级详解Go语言中错误处理的实践指南》Go语言采用了一种独特而明确的错误处理哲学,与其他主流编程语言形成鲜明对比,本文将为大家详细介绍Go语言中错误处理详细方法,希望对大家有所帮助... 目录1 Go 错误处理哲学与核心机制1.1 错误接口设计1.2 错误与异常的区别2 错误创建与检查2.1 基础

Linux云服务器手动配置DNS的方法步骤

《Linux云服务器手动配置DNS的方法步骤》在Linux云服务器上手动配置DNS(域名系统)是确保服务器能够正常解析域名的重要步骤,以下是详细的配置方法,包括系统文件的修改和常见问题的解决方案,需要... 目录1. 为什么需要手动配置 DNS?2. 手动配置 DNS 的方法方法 1:修改 /etc/res

Linux创建服务使用systemctl管理详解

《Linux创建服务使用systemctl管理详解》文章指导在Linux中创建systemd服务,设置文件权限为所有者读写、其他只读,重新加载配置,启动服务并检查状态,确保服务正常运行,关键步骤包括权... 目录创建服务 /usr/lib/systemd/system/设置服务文件权限:所有者读写js,其他

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

Linux挂载linux/Windows共享目录实现方式

《Linux挂载linux/Windows共享目录实现方式》:本文主要介绍Linux挂载linux/Windows共享目录实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录文件共享协议linux环境作为服务端(NFS)在服务器端安装 NFS创建要共享的目录修改 NFS 配

linux系统中java的cacerts的优先级详解

《linux系统中java的cacerts的优先级详解》文章讲解了Java信任库(cacerts)的优先级与管理方式,指出JDK自带的cacerts默认优先级更高,系统级cacerts需手动同步或显式... 目录Java 默认使用哪个?如何检查当前使用的信任库?简要了解Java的信任库总结了解 Java 信