python与机器学习(三)——真正(负)率 / 假正(负)例 / ROC / AUC

2024-03-15 08:18

本文主要是介绍python与机器学习(三)——真正(负)率 / 假正(负)例 / ROC / AUC,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

读取data.csv文件数据完成:

1.分别计算真正例(TP)、真负例(TN)、假正例(FP)、假负例(FN)数量
2.分别计算各类别(正/负例)的精确率(Precision)、召回率(Recall)、F1值(F1-score)
3.分别计算精确率、召回率、F1-score的宏平均(Macro Average)并且计算准确率(Accuracy)
4.绘制ROC曲线并计算曲线下面积AUC (可使用sklearn包)

其中"data.csv"的部分数据如下所示:
data.csv

1 读取数据

预测概率转换为预测类别:

以0.5为阈值,将预测概率predict_prob列二值化为0/1,即值小于0.5的元素变为0,不小于0.5的元素变为1,建议新生成单独的预测类别数组
注:读取数据的标签中1表示正例,0表示负例

import pandas as pd
import numpy as np
DATA_PATH = 'data.csv'
data = pd.read_csv(DATA_PATH)
def transform(a):if a['predict_prob'] < 0.5:a.loc['predict_prob'] = 0else:a.loc['predict_prob'] = 1return a
data0 = data.loc[:].apply(transform, axis = 1)
data0

2 计算真正例(TP)、真负例(TN)、假正例(FP)、假负例(FN)数值

def count(data, a, b):ans = 0;for indexs in data.index:if data.loc[indexs, 'predict_prob'] == a and data.loc[indexs, 'label'] == b:ans += 1return ans;
TP = count(data0, 1, 1)
TN = count(data0, 0, 0)
FP = count(data0, 1, 0)
FN = count(data0, 0, 1)
print(str(TP)+'\n'+str(TN)+'\n'+str(FP)+'\n'+str(FN))

运行结果如下:

348
198
14
9

3 计算各类别(正/负例)的精确率(Precision)、召回率(Recall)、F1值

PP = TP/(TP+FP)
NP = TN/(TN+FN)
PR = TP/(TP+FN)
NR = TN/(TN+FP)
PF1 = 2*(PP*PR/(PP+PR))
NF1 = 2*(NP*NR/(NP+NR))
print('%.4f\n%.4f\n%.4f\n%.4f\n%.4f\n%.4f\n' %(PP, NP, PR, NR, PF1, NF1))

运行结果如下:

0.9613
0.9565
0.9748
0.9340
0.9680
0.9451

4 计算精确率、召回率、F1值的宏平均(Macro Average)并且计算准确率

P = (PP+NP)/2
R = (PR+NR)/2
F1 = (PF1+NF1)/2
A = (TP+TN)/(TP+FP+TN+FN)
print('%.4f\n%.4f\n%.4f\n%.4f'%(P, R, F1, A))

运行结果如下:

0.9589
0.9544
0.9566
0.9596

5 绘制ROC曲线并计算曲线下面积AUC

from sklearn.metrics import roc_curve, auc
import matplotlib as mpl  
import matplotlib.pyplot as plt
def plot_roc(labels, predict_prob):false_positive_rate,true_positive_rate,thresholds=roc_curve(labels, predict_prob)roc_auc=auc(false_positive_rate, true_positive_rate)plt.title('ROC')plt.plot(false_positive_rate, true_positive_rate,'b',label='AUC = %0.4f'% roc_auc)plt.legend(loc='lower right')plt.plot([0,1],[0,1],'r--')plt.ylabel('TPR')plt.xlabel('FPR')plt.show()plot_roc(data['label'], data['predict_prob'])

运行结果如下:
结果

这篇关于python与机器学习(三)——真正(负)率 / 假正(负)例 / ROC / AUC的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/811329

相关文章

python中的显式声明类型参数使用方式

《python中的显式声明类型参数使用方式》文章探讨了Python3.10+版本中类型注解的使用,指出FastAPI官方示例强调显式声明参数类型,通过|操作符替代Union/Optional,可提升代... 目录背景python函数显式声明的类型汇总基本类型集合类型Optional and Union(py

使用Python实现无损放大图片功能

《使用Python实现无损放大图片功能》本文介绍了如何使用Python的Pillow库进行无损图片放大,区分了JPEG和PNG格式在放大过程中的特点,并给出了示例代码,JPEG格式可能受压缩影响,需先... 目录一、什么是无损放大?二、实现方法步骤1:读取图片步骤2:无损放大图片步骤3:保存图片三、示php

Python文本相似度计算的方法大全

《Python文本相似度计算的方法大全》文本相似度是指两个文本在内容、结构或语义上的相近程度,通常用0到1之间的数值表示,0表示完全不同,1表示完全相同,本文将深入解析多种文本相似度计算方法,帮助您选... 目录前言什么是文本相似度?1. Levenshtein 距离(编辑距离)核心公式实现示例2. Jac

使用Python实现一个简易计算器的新手指南

《使用Python实现一个简易计算器的新手指南》计算器是编程入门的经典项目,它涵盖了变量、输入输出、条件判断等核心编程概念,通过这个小项目,可以快速掌握Python的基础语法,并为后续更复杂的项目打下... 目录准备工作基础概念解析分步实现计算器第一步:获取用户输入第二步:实现基本运算第三步:显示计算结果进

Python多线程实现大文件快速下载的代码实现

《Python多线程实现大文件快速下载的代码实现》在互联网时代,文件下载是日常操作之一,尤其是大文件,然而,网络条件不稳定或带宽有限时,下载速度会变得很慢,本文将介绍如何使用Python实现多线程下载... 目录引言一、多线程下载原理二、python实现多线程下载代码说明:三、实战案例四、注意事项五、总结引

Python利用PySpark和Kafka实现流处理引擎构建指南

《Python利用PySpark和Kafka实现流处理引擎构建指南》本文将深入解剖基于Python的实时处理黄金组合:Kafka(分布式消息队列)与PySpark(分布式计算引擎)的化学反应,并构建一... 目录引言:数据洪流时代的生存法则第一章 Kafka:数据世界的中央神经系统消息引擎核心设计哲学高吞吐

Unity新手入门学习殿堂级知识详细讲解(图文)

《Unity新手入门学习殿堂级知识详细讲解(图文)》Unity是一款跨平台游戏引擎,支持2D/3D及VR/AR开发,核心功能模块包括图形、音频、物理等,通过可视化编辑器与脚本扩展实现开发,项目结构含A... 目录入门概述什么是 UnityUnity引擎基础认知编辑器核心操作Unity 编辑器项目模式分类工程

Python进阶之列表推导式的10个核心技巧

《Python进阶之列表推导式的10个核心技巧》在Python编程中,列表推导式(ListComprehension)是提升代码效率的瑞士军刀,本文将通过真实场景案例,揭示列表推导式的进阶用法,希望对... 目录一、基础语法重构:理解推导式的底层逻辑二、嵌套循环:破解多维数据处理难题三、条件表达式:实现分支

Java调用Python脚本实现HelloWorld的示例详解

《Java调用Python脚本实现HelloWorld的示例详解》作为程序员,我们经常会遇到需要在Java项目中调用Python脚本的场景,下面我们来看看如何从基础到进阶,一步步实现Java与Pyth... 目录一、环境准备二、基础调用:使用 Runtime.exec()2.1 实现步骤2.2 代码解析三、

Python中的filter() 函数的工作原理及应用技巧

《Python中的filter()函数的工作原理及应用技巧》Python的filter()函数用于筛选序列元素,返回迭代器,适合函数式编程,相比列表推导式,内存更优,尤其适用于大数据集,结合lamb... 目录前言一、基本概念基本语法二、使用方式1. 使用 lambda 函数2. 使用普通函数3. 使用 N